Descripteur
Documents disponibles dans cette catégorie (170)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning / Thiên-Anh Nguyen in Remote sensing of environment, vol 281 (November 2022)
[article]
Titre : Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning Type de document : Article/Communication Auteurs : Thiên-Anh Nguyen, Auteur ; Benjamin Kellenberger, Auteur ; Devis Tuia, Auteur Année de publication : 2022 Article en page(s) : n° 113217 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alpes
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] carte forestière
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] écotone
[Termes IGN] hauteur des arbres
[Termes IGN] image à très haute résolution
[Termes IGN] image aérienne
[Termes IGN] image RVB
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] SuisseRésumé : (auteur) Forest maps are essential to understand forest dynamics. Due to the increasing availability of remote sensing data and machine learning models like convolutional neural networks, forest maps can these days be created on large scales with high accuracy. Common methods usually predict a map from remote sensing images without deliberately considering intermediate semantic concepts that are relevant to the final map. This makes the mapping process difficult to interpret, especially when using opaque deep learning models. Moreover, such procedure is entirely agnostic to the definitions of the mapping targets (e.g., forest types depending on variables such as tree height and tree density). Common models can at best learn these rules implicitly from data, which greatly hinders trust in the produced maps. In this work, we aim at building an explainable deep learning model for forest mapping that leverages prior knowledge about forest definitions to provide explanations to its decisions. We propose a model that explicitly quantifies intermediate variables like tree height and tree canopy density involved in the forest definitions, corresponding to those used to create the forest maps for training the model in the first place, and combines them accordingly. We apply our model to mapping forest types using very high resolution aerial imagery and lay particular focus on the treeline ecotone at high altitudes, where forest boundaries are complex and highly dependent on the chosen forest definition. Results show that our rule-informed model is able to quantify intermediate key variables and predict forest maps that reflect forest definitions. Through its interpretable design, it is further able to reveal implicit patterns in the manually-annotated forest labels, which facilitates the analysis of the produced maps and their comparison with other datasets. Numéro de notice : A2022-794 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2022.113217 Date de publication en ligne : 01/09/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101928
in Remote sensing of environment > vol 281 (November 2022) . - n° 113217[article]How large-scale bark beetle infestations influence the protective effects of forest stands against avalanches: A case study in the Swiss Alps / Marion E. Caduff in Forest ecology and management, vol 514 (June-15 2022)
[article]
Titre : How large-scale bark beetle infestations influence the protective effects of forest stands against avalanches: A case study in the Swiss Alps Type de document : Article/Communication Auteurs : Marion E. Caduff, Auteur ; Natalie Brožová, Auteur ; Andrea D. Kupferschmid, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120201 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alpes
[Termes IGN] avalanche
[Termes IGN] bois mort
[Termes IGN] dépérissement
[Termes IGN] image à haute résolution
[Termes IGN] modèle de simulation
[Termes IGN] orthophotographie
[Termes IGN] protection des forêts
[Termes IGN] régénération (sylviculture)
[Termes IGN] risque naturel
[Termes IGN] santé des forêts
[Termes IGN] Scolytinae
[Termes IGN] Suisse
[Termes IGN] xylophageRésumé : (auteur) Large-scale bark beetle outbreaks in spruce dominated mountain forests have increased in recent decades, and this trend is expected to continue in the future. These outbreaks have immediate and major effects on forest structure and ecosystem services. However, it remains unclear how forests recover from bark beetle infestations over the long term, and how different recovery stages fulfil the capacity of forests to protect infrastructures and human lives from natural hazards. The aim of this study was to investigate how a bark beetle infestation (1992–1997) in a spruce dominated forest in the Swiss Alps changed the forest structure and its protective function against snow avalanches. In 2020, i.e. 27 years after the peak of the outbreak, we re-surveyed the composition and height of new trees, as well as the deadwood height and degree of decay in an area that had been surveyed 20 years earlier. With the help of remote sensing data and avalanche simulations, we assessed the protective effect against avalanches before the disturbances (in 1985) and in 1997, 2007, 2014 and 2019 for a frequent (30-year return period) and an extreme (300-year return period) avalanche scenario. Post-disturbance regeneration led to a young forest that was again dominated by spruce 27 years after the outbreak, with median tree heights of 3–4 m and a crown cover of 10–30%. Deadwood covered 20–25% of the forest floor and was mainly in decay stages two and three out of five. Snags had median heights of 1.4 m, leaning logs 0.5 m and lying logs 0.3 m. The protective effect of the forest was high before the bark beetle outbreak and decreased during the first years of infestation (until 1997), mainly in the case of extreme avalanche events. The protective capacity reached an overall minimum in 2007 as a result of many forest openings. It partially recovered by 2014 and further increased by 2019, thanks to forest regeneration. Simulation results and a lack of avalanche releases since the infestation indicate that the protective capacity of post-disturbance forest stands affected by bark beetle may often be underestimated. Numéro de notice : A2022-349 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2022.120201 Date de publication en ligne : 08/04/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120201 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100536
in Forest ecology and management > vol 514 (June-15 2022) . - n° 120201[article]Shining light on danger / Anonyme in GEO: Geoconnexion international, Vol 20 n° 5 (Autumn 2021)
[article]
Titre : Shining light on danger Type de document : Article/Communication Auteurs : Anonyme, Auteur Année de publication : 2021 Article en page(s) : pp 41 - 42 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Alpes
[Termes IGN] Bavière (Allemagne)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] éboulement
[Termes IGN] glacierRésumé : (éditeur) A project at the University of Bayreuth is using laser scanners to support rockfall detection in the Alps, as glaciers retreat. Numéro de notice : A2021-905 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99255
in GEO: Geoconnexion international > Vol 20 n° 5 (Autumn 2021) . - pp 41 - 42[article]A quantitative assessment of rockfall influence on forest structure in the Swiss Alps / Christine Moos in European Journal of Forest Research, vol 140 n° 1 (February 2021)
[article]
Titre : A quantitative assessment of rockfall influence on forest structure in the Swiss Alps Type de document : Article/Communication Auteurs : Christine Moos, Auteur ; Nora Khelidj, Auteur ; Antoine Guisan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 91 - 104 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Végétation
[Termes IGN] Alpes
[Termes IGN] croissance végétale
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] dynamique de la végétation
[Termes IGN] éboulement
[Termes IGN] modèle de simulation
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] SuisseRésumé : (auteur) Forests below rocky cliffs often play a very important role in protecting settlements against rockfall. The structure and development of these forests are expected to be substantially affected by the disturbance of the falling rocks. Knowing about this effect is important to predict the development of protection forests and consider potential effects of the falling blocks in management strategies. The goal of this study is to quantify differences in forest structure depending on rockfall activity in four different sites in the Swiss Alps. For this, we collected data on forest structure in zones of different rockfall activity and derived rockfall impact probabilities based on rockfall simulations. We assessed whether differences in forest structure and signs of rockfall disturbance could be observed between the rockfall zones. We additionally built mixed-effects models to identify the key variables explaining the forest characteristics described by diameter (DBH) and basal area (bA). The forest structure differs between the rockfall zones, however, with varying effects amongst the sites. DBH tends to decrease with increasing rockfall activity, whereas tree density appears to be little impacted by rockfall. For most sites, the number of deposited blocks and the simulated tree impact probability have a significant effect in the models along with the species, whereas for one site, hardly any effect of rockfall was found. Our results, obtained either from direct measurements or modelling, show that rockfall can locally influence the structure of forests, whereas the influence depends on the frequency and intensity of the rockfall disturbance. Impact probabilities obtained by simulations can serve as a good proxy for rockfall disturbances. Numéro de notice : A2021-256 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10342-020-01317-0 Date de publication en ligne : 18/09/2020 En ligne : https://doi.org/10.1007/s10342-020-01317-0 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97290
in European Journal of Forest Research > vol 140 n° 1 (February 2021) . - pp 91 - 104[article]Using automated vegetation cover estimation from close-range photogrammetric point clouds to compare vegetation location properties in mountain terrain / R. Niederheiser in GIScience and remote sensing, vol 58 n° 1 (February 2021)
[article]
Titre : Using automated vegetation cover estimation from close-range photogrammetric point clouds to compare vegetation location properties in mountain terrain Type de document : Article/Communication Auteurs : R. Niederheiser, Auteur ; M. Winkler, Auteur ; V. Di Cecco, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 120 - 137 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie terrestre
[Termes IGN] Alpes
[Termes IGN] caméra numérique
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification semi-dirigée
[Termes IGN] couvert végétal
[Termes IGN] distribution de Poisson
[Termes IGN] données topographiques
[Termes IGN] indice de végétation
[Termes IGN] module linéaire
[Termes IGN] montagne
[Termes IGN] occupation du sol
[Termes IGN] photogrammétrie métrologique
[Termes IGN] semis de pointsRésumé : (auteur) In this paper we present a low-cost approach to mapping vegetation cover by means of high-resolution close-range terrestrial photogrammetry. A total of 249 clusters of nine 1 m2 plots each, arranged in a 3 × 3 grid, were set up on 18 summits in Mediterranean mountain regions and in the Alps to capture images for photogrammetric processing and in-situ vegetation cover estimates. This was done with a hand-held pole-mounted digital single-lens reflex (DSLR) camera. Low-growing vegetation was automatically segmented using high-resolution point clouds. For classifying vegetation we used a two-step semi-supervised Random Forest approach. First, we applied an expert-based rule set using the Excess Green index (ExG) to predefine non-vegetation and vegetation points. Second, we applied a Random Forest classifier to further enhance the classification of vegetation points using selected topographic parameters (elevation, slope, aspect, roughness, potential solar irradiation) and additional vegetation indices (Excess Green Minus Excess Red (ExGR) and the vegetation index VEG). For ground cover estimation the photogrammetric point clouds were meshed using Screened Poisson Reconstruction. The relative influence of the topographic parameters on the vegetation cover was determined with linear mixed-effects models (LMMs). Analysis of the LMMs revealed a high impact of elevation, aspect, solar irradiation, and standard deviation of slope. The presented approach goes beyond vegetation cover values based on conventional orthoimages and in-situ vegetation cover estimates from field surveys in that it is able to differentiate complete 3D surface areas, including overhangs, and can distinguish between vegetation-covered and other surfaces in an automated manner. The results of the Random Forest classification confirmed it as suitable for vegetation classification, but the relative feature importance values indicate that the classifier did not leverage the potential of the included topographic parameters. In contrast, our application of LMMs utilized the topographic parameters and was able to reveal dependencies in the two biomes, such as elevation and aspect, which were able to explain between 87% and 92.5% of variance. Numéro de notice : A2021-258 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2020.1859264 Date de publication en ligne : 13/01/2021 En ligne : https://doi.org/10.1080/15481603.2020.1859264 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97295
in GIScience and remote sensing > vol 58 n° 1 (February 2021) . - pp 120 - 137[article]Geostatistical analysis and mitigation of the atmospheric phase screens in Ku-band terrestrial radar interferometric observations of an alpine glacier / Simone Baffelli in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)PermalinkImpact of GPS processing on the estimation of snow water equivalent using refracted GPS signals / Ladina Steiner in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)PermalinkIntegration of corner reflectors for the monitoring of mountain glacier areas with Sentinel-1 time series / Matthias Jauvin in Remote sensing, vol 11 n° 8 (August 2019)PermalinkHigh-resolution models of tropospheric delays and refractivity based on GNSS and numerical weather prediction data for alpine regions in Switzerland / Karina Wilgan in Journal of geodesy, vol 93 n°6 (June 2019)PermalinkA growth-model-driven technique for tree stem diameter estimation by using airborne LiDAR data / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)PermalinkFictive motion extraction and classification / Ekaterina Egorova in International journal of geographical information science IJGIS, vol 32 n° 11-12 (November - December 2018)PermalinkDoes long-term GPS in the Western Alps finally confirm earthquake mechanisms? / Andrea Walpersdorf in Tectonics, vol 37 n° 10 (October 2018)PermalinkAre prominent mountains frequently mentioned in text? Exploring the spatial expressiveness of text frequency / Curdin Derungs in International journal of geographical information science IJGIS, vol 32 n° 5-6 (May - June 2018)PermalinkLa carte de la Route des Grandes Alpes / Anonyme in Géomatique expert, n° 116 (mai - juin 2017)PermalinkPermalink