Descripteur
Documents disponibles dans cette catégorie (46)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Heat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)
[article]
Titre : Heat wave-induced augmentation of surface urban heat islands strongly regulated by rural background Type de document : Article/Communication Auteurs : Shiqi Miao, Auteur ; Wenfeng Zhan, Auteur ; Jiameng Lai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103874 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] Chine
[Termes IGN] climat tropical
[Termes IGN] couvert végétal
[Termes IGN] densité de la végétation
[Termes IGN] données environnementales
[Termes IGN] forêt
[Termes IGN] humidité de l'air
[Termes IGN] ilot thermique urbain
[Termes IGN] image Terra-MODIS
[Termes IGN] nuit
[Termes IGN] température au sol
[Termes IGN] zone humide
[Termes IGN] zone ruraleRésumé : (auteur) The impact of heat waves (HWs) on surface urban heat islands (SUHIs) has been widely studied, but the spatial pattern of SUHI responsiveness to HWs across various climates remains unclear, and the influence of HW intensity on SUHI responsiveness has not been systematically quantified. Using MODIS land surface temperature data, here we investigated the responsiveness of SUHI to HWs (quantified as ∆I) as well as its variations with HW intensity in 354 cities in seven climate zones across China. We find that during HW periods, the SUHI and surface urban cool island are augmented in the humid and arid regions of China, respectively. The inter-city heterogeneity in rural vegetation coverage accounts for such a spatial pattern. In eastern China, the ∆I peaks in the north subtropical climate (0.72 ± 0.54 K for daytime and 0.29 ± 0.23 K for the nighttime) probably for its specific rural farming method. With the intensification of HWs, the augmentation effect can be further enhanced for the north subtropical, warm temperate, and arid temperate climates during the day and for almost all the climates at night. These findings can help advance the understanding of the responsiveness of SUHI to extreme climatic events. Numéro de notice : A2022-375 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2022.103874 Date de publication en ligne : 13/04/2022 En ligne : https://doi.org/10.1016/j.scs.2022.103874 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100624
in Sustainable Cities and Society > vol 82 (July 2022) . - n° 103874[article]A constraint-based approach for identifying the urban–rural fringe of polycentric cities using multi-sourced data / Jing Yang in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)
[article]
Titre : A constraint-based approach for identifying the urban–rural fringe of polycentric cities using multi-sourced data Type de document : Article/Communication Auteurs : Jing Yang, Auteur ; Jingwen Dong, Auteur ; Yizhong Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 114 - 136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] délimitation de frontière
[Termes IGN] données multisources
[Termes IGN] entropie de Shannon
[Termes IGN] espace rural
[Termes IGN] estimation par noyau
[Termes IGN] Kiangsou (Chine)
[Termes IGN] programmation par contraintes
[Termes IGN] transformation en ondelettes
[Termes IGN] urbanisation
[Termes IGN] zonage (urbanisme)
[Termes IGN] zone rurale
[Termes IGN] zone urbaineRésumé : (auteur) Studies on urban–rural fringes, which represent regions facing various urbanization problems caused by rapid expansion, have steadily increased in recent years. However, problems persist in the quantitative delimitation of such regions. Based on the characteristics of abrupt urbanization-level changes in urban–rural fringe areas, we propose a constraint-based method in this study to detect the urban–rural fringes of cities with a spatial polycentric structure of ‘Main center–Subcenter’ based on data from multiple sources. We used the proposed approach to delimitate the fringe areas of Jiangyin and Zhangjiagang and identify their urban main center and subcenter pre-defined by their city master plans, towns, and rural hinterlands. Comparison of the identified results of different single urbanization indices, a single detection center, kernel density estimation, and a single constraint revealed that the patch density and Shannon’s diversity index of the proposed method were higher in urban–rural fringes and smaller in city centers and rural hinterlands. This suggests that the landscape of urban–rural fringes delimitated by the proposed method is more fragmented, diverse, and complicated, thereby performing better. This study is significant for future urban spatial analysis, planning, and management. Numéro de notice : A2022-045 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/13658816.2021.1876236 Date de publication en ligne : 05/02/2021 En ligne : https://doi.org/10.1080/13658816.2021.1876236 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99404
in International journal of geographical information science IJGIS > vol 36 n° 1 (January 2022) . - pp 114 - 136[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022011 SL Revue Centre de documentation Revues en salle Disponible Urban heat island formation in greater Cairo: Spatio-temporal analysis of daytime and nighttime land surface temperatures along the urban–rural gradient / Darshana Athukorala in Remote sensing, vol 13 n° 7 (April-1 2021)
[article]
Titre : Urban heat island formation in greater Cairo: Spatio-temporal analysis of daytime and nighttime land surface temperatures along the urban–rural gradient Type de document : Article/Communication Auteurs : Darshana Athukorala, Auteur ; Yuji Murayama, Auteur Année de publication : 2021 Article en page(s) : n° 1396 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] apprentissage automatique
[Termes IGN] espace vert
[Termes IGN] Google Earth Engine
[Termes IGN] ilot thermique urbain
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TIRS
[Termes IGN] image Landsat-TM
[Termes IGN] image Terra-MODIS
[Termes IGN] Le Caire
[Termes IGN] nuit
[Termes IGN] température au sol
[Termes IGN] urbanisme
[Termes IGN] variation diurne
[Termes IGN] zone rurale
[Termes IGN] zone urbaineRésumé : (auteur) An urban heat island (UHI) is a significant anthropogenic modification of urban land surfaces, and its geospatial pattern can increase the intensity of the heatwave effects. The complex mechanisms and interactivity of the land surface temperature in urban areas are still being examined. The urban–rural gradient analysis serves as a unique natural opportunity to identify and mitigate ecological worsening. Using Landsat Thematic Mapper (TM), Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS), Land Surface Temperature (LST) data in 2000, 2010, and 2019, we examined the spatial difference in daytime and nighttime LST trends along the urban–rural gradient in Greater Cairo, Egypt. Google Earth Engine (GEE) and machine learning techniques were employed to conduct the spatio-temporal analysis. The analysis results revealed that impervious surfaces (ISs) increased significantly from 564.14 km2 in 2000 to 869.35 km2 in 2019 in Greater Cairo. The size, aggregation, and complexity of patches of ISs, green space (GS), and bare land (BL) showed a strong correlation with the mean LST. The average urban–rural difference in mean LST was −3.59 °C in the daytime and 2.33 °C in the nighttime. In the daytime, Greater Cairo displayed the cool island effect, but in the nighttime, it showed the urban heat island effect. We estimated that dynamic human activities based on the urban structure are causing the spatial difference in the LST distribution between the day and night. The urban–rural gradient analysis indicated that this phenomenon became stronger from 2000 to 2019. Considering the drastic changes in the spatial patterns and the density of IS, GS, and BL, urban planners are urged to take immediate steps to mitigate increasing surface UHI; otherwise, urban dwellers might suffer from the severe effects of heatwaves. Numéro de notice : A2021-352 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13071396 Date de publication en ligne : 05/04/2021 En ligne : https://doi.org/10.3390/rs13071396 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97602
in Remote sensing > vol 13 n° 7 (April-1 2021) . - n° 1396[article]Improving public data for building segmentation from Convolutional Neural Networks (CNNs) for fused airborne lidar and image data using active contours / David Griffiths in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Improving public data for building segmentation from Convolutional Neural Networks (CNNs) for fused airborne lidar and image data using active contours Type de document : Article/Communication Auteurs : David Griffiths, Auteur ; Jan Böhm , Auteur Année de publication : 2019 Article en page(s) : pp 70 - 83 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données publiques
[Termes IGN] fusion de données
[Termes IGN] image RVB
[Termes IGN] Royaume-Uni
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] zone ruraleRésumé : (Auteur) Robust and reliable automatic building detection and segmentation from aerial images/point clouds has been a prominent field of research in remote sensing, computer vision and point cloud processing for a number of decades. One of the largest issues associated with deep learning methods is the high quantity of data required for training. To help address this we present a method to improve public GIS building footprint labels by using Morphological Geodesic Active Contours (MorphGACs). We demonstrate by improving the quality of building footprint labels for detection and semantic segmentation, more robust and reliable models can be obtained. We evaluate these methods over a large UK-based dataset of 24556 images containing 169835 building instances. This is achieved by training several Mask/Faster R-CNN and RetinaNet deep convolutional neural networks. Networks are supplied with both RGB and fused RGB-lidar data. We offer quantitative analysis on the benefits of the inclusion of depth data for building segmentation. By employing both methods we achieve a detection accuracy of 0.92 (mAP@0.5) and segmentation f1 scores of 0.94 over a 4911 test images ranging from urban to rural scenes. Numéro de notice : A2019-265 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.013 Date de publication en ligne : 06/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.013 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93079
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 70 - 83[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Correcting rural building annotations in OpenStreetMap using convolutional neural networks / John E. Vargas-Muñoz in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
[article]
Titre : Correcting rural building annotations in OpenStreetMap using convolutional neural networks Type de document : Article/Communication Auteurs : John E. Vargas-Muñoz, Auteur ; Sylvain Lobry, Auteur ; Alexandre X. Falcão, Auteur ; Devis Tuia, Auteur Année de publication : 2019 Article en page(s) : pp 283 - 293 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] bati
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] correction géométrique
[Termes IGN] données localisées des bénévoles
[Termes IGN] habitat rural
[Termes IGN] mise à jour de base de données
[Termes IGN] OpenStreetMap
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation sémantique
[Termes IGN] Tanzanie
[Termes IGN] Zimbabwe
[Termes IGN] zone ruraleRésumé : (auteur) Rural building mapping is paramount to support demographic studies and plan actions in response to crisis that affect those areas. Rural building annotations exist in OpenStreetMap (OSM), but their quality and quantity are not sufficient for training models that can create accurate rural building maps. The problems with these annotations essentially fall into three categories: (i) most commonly, many annotations are geometrically misaligned with the updated imagery; (ii) some annotations do not correspond to buildings in the images (they are misannotations or the buildings have been destroyed); and (iii) some annotations are missing for buildings in the images (the buildings were never annotated or were built between subsequent image acquisitions). First, we propose a method based on Markov Random Field (MRF) to align the buildings with their annotations. The method maximizes the correlation between annotations and a building probability map while enforcing that nearby buildings have similar alignment vectors. Second, the annotations with no evidence in the building probability map are removed. Third, we present a method to detect non-annotated buildings with predefined shapes and add their annotation. The proposed methodology shows considerable improvement in accuracy of the OSM annotations for two regions of Tanzania and Zimbabwe, being more accurate than state-of-the-art baselines. Numéro de notice : A2019-038 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.11.010 Date de publication en ligne : 06/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.11.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91975
in ISPRS Journal of photogrammetry and remote sensing > vol 147 (January 2019) . - pp 283 - 293[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019013 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2019012 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt PermalinkMise en oeuvre d’un SIG pour le projet FARMaine (Partie 2) / Adèle Debray in Géomatique expert, n° 124 (septembre - octobre 2018)PermalinkA new model for cadastral surveying using crowdsourcing / K. Apostolopoulos in Survey review, vol 50 n° 359 (March 2018)PermalinkRetrieving spatial variations of land surface temperatures from satellite data–Cairo region, Egypt / Mohamed E. Hereher in Geocarto international, vol 32 n° 5 (May 2017)PermalinkContext-dependent detection of non-linearly distributed points for vegetation classification in airborne LiDAR / Denis Horvat in ISPRS Journal of photogrammetry and remote sensing, vol 116 (June 2016)PermalinkLe plan de mobilité rurale / Cécile Clément-Werny (2016)PermalinkTemporal decorrelation in L-, C-, and X-band satellite radar interferometry for pasture on drained cs / Yu Morishita in IEEE Transactions on geoscience and remote sensing, vol 53 n° 2 (February 2015)PermalinkDigging into the history of VGI data-sets: results from a worldwide study on OpenStreetMap mapping activity / Simon Gröchenig in Journal of location-based services, vol 8 n° 3 ([01/11/2014])PermalinkOptimisation de transport à la demande dans des territoires polarisés / Rémy Chevrier in Cartes & Géomatique, n° 215 (mars 2013)PermalinkEmpirical evidence on agricultural land-use change in Sardinia, Italy, from GIS-based analysis and a Tobit model / Corrado Zoppi in Cartographica, vol 47 n° 4 (December 2012)Permalink