Descripteur
Documents disponibles dans cette catégorie (1766)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic detection of planted trees and their heights using photogrammetric rpa point clouds / Kênia Samara Mourão Santos in Boletim de Ciências Geodésicas, vol 27 n° 3 ([01/10/2021])
[article]
Titre : Automatic detection of planted trees and their heights using photogrammetric rpa point clouds Type de document : Article/Communication Auteurs : Kênia Samara Mourão Santos, Auteur ; Christel Lingnau, Auteur ; Daniel Rodrigues dos Santos, Auteur Année de publication : 2021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] détection d'arbres
[Termes IGN] hauteur des arbres
[Termes IGN] image aérienne
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Parana (Brésil)
[Termes IGN] Pinus taeda
[Termes IGN] plantation forestière
[Termes IGN] semis de pointsRésumé : (auteur) This work aims to analyze the potential of the Photogrammetric Point Cloud (PPC) obtained from Remote Piloted Aircraft (RPA) optical images for detecting and obtaining tree heights in a loblolly pine plantation using a global maximum filter. The enhanced algorithm used in this study is then named STD (Single Tree Detection). Field surveys were conducted to count all the trees in the field (Forest Census) and measure the trees’ height with a vertex hypsometer. The results were faced to PCC outcomes. The detection rate (r) was equal to the precision rate (p), indicating that the algorithm reaches a high tree detection performance. In summary, the STD algorithm segmented 2,192 trees, representing 89% of trees recorded in the forest census. The retrieved tree height reached, on average, a height of 17.05 m, whereas slightly higher by the traditional forest inventory (17.42 m). The root-mean-square error (RMSE) and Bias were 47 cm (2.8%) and -37 cm (-2.2%), respectively. The Dunnett test showed that the tree height did not significantly differ between the results obtained by traditional forest inventory from those generated by the STD. It confirms the potential use of PPC for forest inventory procedures. Numéro de notice : A2021-958 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1590/s1982-21702021000300025 En ligne : https://doi.org/10.1590/s1982-21702021000300025 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100075
in Boletim de Ciências Geodésicas > vol 27 n° 3 [01/10/2021][article]Comparison of digital elevation models through the analysis of geomorphic surface remnants in the Desatoya Mountains, Nevada / Bernadett Dobre in Transactions in GIS, vol 25 n° 5 (October 2021)
[article]
Titre : Comparison of digital elevation models through the analysis of geomorphic surface remnants in the Desatoya Mountains, Nevada Type de document : Article/Communication Auteurs : Bernadett Dobre, Auteur ; Istvan P. Kovács, Auteur ; Titusz Bugya, Auteur Année de publication : 2021 Article en page(s) : pp 2262 - 2282 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse comparative
[Termes IGN] bassin hydrographique
[Termes IGN] carte géologique
[Termes IGN] données lidar
[Termes IGN] géomorphologie
[Termes IGN] GRASS
[Termes IGN] MNS ASTER
[Termes IGN] MNS SRTM
[Termes IGN] modèle numérique de surface
[Termes IGN] Nevada (Etats-Unis)
[Termes IGN] semis de points
[Termes IGN] sommet (relief)
[Termes IGN] zone semi-arideRésumé : (auteur) This article explores the advantages and limitations of open-source digital elevation models (DEMs) generated from various acquisition methods and at various spatial resolutions, through extracting geomorphic surface remnants in a semi-arid, mountainous topographic environment. Even if the tested models have well-known vertical accuracy and precision, their reliability for peak detection is still waiting to be studied. In this research, we investigate peaks as remnants of degraded geomorphic surfaces. Peaks of surface remnants can help to reconstruct geomorphic surfaces and evaluate DEM applicabilities, since they can enhance the identification of overall accuracy. Our methodology uses a well-known open-source GRASS GIS Geomorphons module (r.geomorphon) on several recently released and widely used DEMs covering the Desatoya Mountains study area. We conclude that, despite the characteristic differences in the accuracy of the analyzed DEMs, all of those examined proved to be appropriate to detect surface remnants. Numéro de notice : A2021-121 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/tgis.12819 Date de publication en ligne : 10/08/2021 En ligne : https://doi.org/10.1111/tgis.12819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99301
in Transactions in GIS > vol 25 n° 5 (October 2021) . - pp 2262 - 2282[article]Deep-learning-based burned area mapping using the synergy of Sentinel-1&2 data / Qi Zhang in Remote sensing of environment, vol 264 (October 2021)
[article]
Titre : Deep-learning-based burned area mapping using the synergy of Sentinel-1&2 data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Ruiheng Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112575 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] cartographie thématique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] incendie
[Termes IGN] réflectance du sol
[Termes IGN] réseau neuronal siamoisRésumé : (auteur) Around 350 million hectares of land are affected by wildfires every year influencing the health of ecosystems and leaving a trail of destruction. Accurate information over burned areas (BA) is essential for governments and communities to prioritize recovery actions. Prior research over the past decades has established the potentials and limitations of space-borne earth observation for mapping BA over large geographic areas at various scales. The operational deployment of Sentinel-1 and Sentinel-2 constellations significantly improved the quality and quantity of the imagery from the microwave (C-band) and optical regions on the spectrum. Based on that, this study set to investigate whether the existing coarse BA products can be further improved by the synergy of optical surface reflectance (SR), radar backscatter coefficient (BS), and/or radar interferometric coherence (COR) data with higher spatial resolutions. A Siamese Self-Attention (SSA) classification strategy is proposed for the multi-sensor BA mapping and a multi-source dataset is constructed at the object level for the training and testing. Results are analyzed by test sites, feature sources, and classification strategies to appraise the improvements achieved by the proposed method. Numéro de notice : A2021-807 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112575 Date de publication en ligne : 06/07/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112575 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98866
in Remote sensing of environment > vol 264 (October 2021) . - n° 112575[article]A deep multi-modal learning method and a new RGB-depth data set for building roof extraction / Mehdi Khoshboresh Masouleh in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)
[article]
Titre : A deep multi-modal learning method and a new RGB-depth data set for building roof extraction Type de document : Article/Communication Auteurs : Mehdi Khoshboresh Masouleh, Auteur ; Reza Shah-Hosseini, Auteur Année de publication : 2021 Article en page(s) : pp 759 - 766 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] détection du bâti
[Termes IGN] données multisources
[Termes IGN] effet de profondeur cinétique
[Termes IGN] empreinte
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image RVB
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation d'image
[Termes IGN] superpixel
[Termes IGN] toitRésumé : (Auteur) This study focuses on tackling the challenge of building mapping in multi-modal remote sensing data by proposing a novel, deep superpixel-wise convolutional neural network called DeepQuantized-Net, plus a new red, green, blue (RGB)-depth data set named IND. DeepQuantized-Net incorporated two practical ideas in segmentation: first, improving the object pattern with the exploitation of superpixels instead of pixels, as the imaging unit in DeepQuantized-Net. Second, the reduction of computational cost. The generated data set includes 294 RGB-depth images (256 training images and 38 test images) from different locations in the state of Indiana in the U.S., with 1024 × 1024 pixels and a spatial resolution of 0.5 ftthat covers different cities. The experimental results using the IND data set demonstrates the mean F1 scores and the average Intersection over Union scores could increase by approximately 7.0% and 7.2% compared to other methods, respectively. Numéro de notice : A2021-677 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00007R2 Date de publication en ligne : 01/10/2021 En ligne : https://doi.org/10.14358/PERS.21-00007R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98878
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 10 (October 2021) . - pp 759 - 766[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021101 SL Revue Centre de documentation Revues en salle Disponible Geomorphological mapping and anthropogenic landform change in an urbanizing watershed using structure-from-motion photogrammetry and geospatial modeling techniques / Peter G. Chirico in Journal of maps, vol 17 n° 4 (October 2021)
[article]
Titre : Geomorphological mapping and anthropogenic landform change in an urbanizing watershed using structure-from-motion photogrammetry and geospatial modeling techniques Type de document : Article/Communication Auteurs : Peter G. Chirico, Auteur ; Sarah E. Bergstresser, Auteur ; Jessica D. DeWitt, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 241 - 252 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] aménagement du territoire
[Termes IGN] archives
[Termes IGN] bassin hydrographique
[Termes IGN] cartographie géomorphologique
[Termes IGN] croissance urbaine
[Termes IGN] détection de changement
[Termes IGN] érosion anthropique
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation spatiale
[Termes IGN] photogrammétrie numérique
[Termes IGN] photographie aérienne
[Termes IGN] structure-from-motion
[Termes IGN] Virginie (Etats-Unis)Résumé : (auteur) Increasing urbanization and suburban growth in cities globally has highlighted the importance of land planning using detailed geomorphologic maps that depict anthropogenic landform changes. Such mapping provides information crucial for land management, hazard identification, and the management of the challenges arising from urbanization. The development and use of quantitative and repeatable methods to map anthropogenic and natural processes are required to advance the science of urban geomorphological mapping. This study investigated the application of geospatial modeling, structure-from-motion (SfM) photogrammetric methods and DEM differencing as means of quantifying anthropogenic landform changes from archival aerial imagery. Anthropogenic landforms were incorporated into a detailed geomorphologic map in an urbanizing watershed located in the Washington, D.C. metropolitan suburb of Vienna, Virginia. Numéro de notice : A2021-813 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1080/17445647.2020.1746419 Date de publication en ligne : 01/04/2020 En ligne : https://doi.org/10.1080/17445647.2020.1746419 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98887
in Journal of maps > vol 17 n° 4 (October 2021) . - pp 241 - 252[article]Impact of travel time uncertainties on modeling of spatial accessibility: a comparison of street data sources / Yan Lin in Cartography and Geographic Information Science, vol 48 n° 6 (October 2021)PermalinkIntegration of heterogeneous terrain data into Discrete Global Grid Systems / Mingke Li in Cartography and Geographic Information Science, vol 48 n° 6 (October 2021)PermalinkSpectral reflectance estimation of UAS multispectral imagery using satellite cross-calibration method / Saket Gowravaram in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)PermalinkEvaluating the potential of cybercartography in facilitating indigenous self-determination: A case study with the Hupačasath first nation / Dexter Robson in Cartographica, vol 56 n° 3 (Fall 2021)PermalinkGIS-based logic scoring of preference method for urban densification suitability analysis / Shuoge Shen in Computers, Environment and Urban Systems, vol 89 (September 2021)PermalinkGIS models for vulnerability of coastal erosion assessment in a tropical protected area / Luís Russo Vieira in ISPRS International journal of geo-information, vol 10 n° 9 (September 2021)PermalinkMulti-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data / Laura Elena Cué La Rosa in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)PermalinkA multiagent systems with Petri Net approach for simulation of urban traffic networks / Mauricio Flores Geronimo in Computers, Environment and Urban Systems, vol 89 (September 2021)PermalinkMonitoring forest disturbance using time-series MODIS NDVI in Michoacán, Mexico / Yao Gao in Geocarto international, vol 36 n° 15 ([15/08/2021])PermalinkMapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America / Bin Chen in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)PermalinkMeasuring shallow-water bathymetric signal strength in lidar point attribute data using machine learning / Kim Lowell in International journal of geographical information science IJGIS, vol 35 n° 8 (August 2021)PermalinkRelative influence of stand and site factors on aboveground live-tree carbon sequestration and mortality in managed and unmanaged forests / Christel C. Kern in Forest ecology and management, vol 493 (August-1 2021)PermalinkShore zone classification from ICESat-2 data over Saint Lawrence Island / Huan Xie in Marine geodesy, vol 44 n° 5 (September 2021)PermalinkSpatiotemporal analysis of urban heat island intensification in the city of Minneapolis-St. Paul and Chicago metropolitan areas using Landsat data from 1984 to 2016 / Mbongowo J. Mbuh in Geocarto international, vol 36 n° 14 ([01/08/2021])PermalinkAnomalous variations of air temperature prior to earthquakes / Irfan Mahmood in Geocarto international, vol 36 n° 12 ([01/07/2021])PermalinkA cellular-automata model for assessing the sensitivity of the street network to natural terrain / Jeeno Soa George in Annals of GIS, vol 27 n° 3 (July 2021)PermalinkEvaluating the suitability of multi-scale terrain attribute calculation approaches for seabed mapping applications / Benjamin Misiuk in Marine geodesy, vol 44 n° 4 (July 2021)PermalinkExtracting Shallow-Water Bathymetry from Lidar point clouds using pulse attribute data: Merging density-based and machine learning approaches / Kim Lowell in Marine geodesy, vol 44 n° 4 (July 2021)PermalinkFlood depth mapping in street photos with image processing and deep neural networks / Bahareh Alizadeh Kharazi in Computers, Environment and Urban Systems, vol 88 (July 2021)PermalinkGeographical and temporal huff model calibration using taxi trajectory data / Shuhui Gong in Geoinformatica, vol 25 n° 3 (July 2021)Permalink