Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > détection de changement
détection de changementVoir aussi |
Documents disponibles dans cette catégorie (552)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Global-aware siamese network for change detection on remote sensing images / Ruiqian Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 199 (May 2023)
[article]
Titre : Global-aware siamese network for change detection on remote sensing images Type de document : Article/Communication Auteurs : Ruiqian Zhang, Auteur ; Hanchao Zhang, Auteur ; Xiaogang Ning, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 61 - 72 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de sensibilité
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection de changement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau neuronal siamoisRésumé : (auteur) Change detection (CD) in remote sensing images is one of the most important technical options to identify changes in observations in an efficient manner. CD has a wide range of applications, such as land use investigation, urban planning, environmental monitoring and disaster mapping. However, the frequently occurring class imbalance problem brings huge challenges to the change detection applications. To address this issue, we develop a novel global-aware siamese network (GAS-Net), aiming to generate global-aware features for efficient change detection by incorporating the relationships between scenes and foregrounds. The proposed GAS-Net, consisting of the global-attention module (GAM) and foreground-awareness module (FAM) that both learns contextual relationships and enhances symbiotic relation learning between scene and foreground. The experimental results demonstrate the effectiveness and robustness of the proposed GAS-Net, achieving up to 91.21% and 95.84% F1 score on two widely used public datasets, i.e., Levir-CD and Lebedev-CD dataset. The source code is available at https://github.com/xiaoxiangAQ/GAS-Net. Numéro de notice : 2023-204 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2023.04.001 Date de publication en ligne : 05/04/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.04.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103106
in ISPRS Journal of photogrammetry and remote sensing > vol 199 (May 2023) . - pp 61 - 72[article]Domain adaptation in segmenting historical maps: A weakly supervised approach through spatial co-occurrence / Sidi Wu in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
[article]
Titre : Domain adaptation in segmenting historical maps: A weakly supervised approach through spatial co-occurrence Type de document : Article/Communication Auteurs : Sidi Wu, Auteur ; Konrad Schindler, Auteur ; Magnus Heitzler, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 199 - 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte ancienne
[Termes IGN] cartographie historique
[Termes IGN] classification dirigée
[Termes IGN] détection de changement
[Termes IGN] données anciennes
[Termes IGN] matrice de co-occurrence
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation d'image
[Termes IGN] vision par ordinateurRésumé : (auteur) Historical maps depict past states of the Earth’s surface and make it possible to trace the natural or anthropogenic evolution of geographic objects back through time. However, the state of the depicted reality is not the only source of change: maps of varying age can differ in terms of graphical design, and also in terms of storage conditions, physical ageing of pigments, and the scanning process for digitization. Consequently, a computer vision system learned from a specific (source) map series will often not generalize well to older or newer (target) maps, calling for domain adaptation. In the present paper we examine – to our knowledge for the first time – domain adaptation for segmenting historical maps. We argue that for geo-spatial data like maps, which are geo-localized by definition, the spatial co-occurrence of geographical objects provides a supervision signal for domain adaptation. Since only a subset of all mapped objects co-occur, and even those are not perfectly aligned due to both real topographic changes and variations in map generalization/production, they only provide weak supervision — still they can bring a substantial benefit over completely unsupervised domain adaptation methods. The core of our proposed method is a novel self-supervised co-occurrence network that detects co-occurring objects across maps (specifically, domains) with a novel loss function that allows for object changes and spatial misalignment. Experiments show that, for the task of segmenting hydrological objects such as rivers, lakes and wetlands, our system significantly outperforms two state-of-art baselines, even with limited supervision (e.g., 5%). The source code is publicly available at https://github.com/sian-wusidi/spatialcooccurrence. Numéro de notice : A2023-146 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2023.01.021 Date de publication en ligne : 14/02/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.01.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102804
in ISPRS Journal of photogrammetry and remote sensing > vol 197 (March 2023) . - pp 199 - 211[article]Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning / Iris de Gelis in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
[article]
Titre : Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning Type de document : Article/Communication Auteurs : Iris de Gelis, Auteur ; Sébastien Lefèvre, Auteur ; Thomas Corpetti, Auteur Année de publication : 2023 Article en page(s) : pp 274 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] modèle numérique de surface
[Termes IGN] réseau neuronal siamois
[Termes IGN] semis de points
[Termes IGN] végétation
[Termes IGN] zone urbaineRésumé : (auteur) This study is concerned with urban change detection and categorization in point clouds. In such situations, objects are mainly characterized by their vertical axis, and the use of native 3D data such as 3D Point Clouds (PCs) is, in general, preferred to rasterized versions because of significant loss of information implied by any rasterization process. Yet, for obvious practical reasons, most existing studies only focus on 2D images for change detection purpose. In this paper, we propose a method capable of performing change detection directly within 3D data. Despite recent deep learning developments in remote sensing, to the best of our knowledge there is no such method to tackle multi-class change segmentation that directly processes raw 3D PCs. Thereby, based on advances in deep learning for change detection in 2D images and for analysis of 3D point clouds, we propose a deep Siamese KPConv network that deals with raw 3D PCs to perform change detection and categorization in a single step. Experimental results are conducted on synthetic and real data of various kinds (LiDAR, multi-sensors). Tests performed on simulated low density LiDAR and multi-sensor datasets show that our proposed method can obtain up to 80% of mean of IoU over classes of changes, leading to an improvement ranging from 10% to 30% over the state-of-the-art. A similar range of improvements is attainable on real data. Then, we show that pre-training Siamese KPConv on simulated PCs allows us to greatly reduce (more than 3,000
) the annotations required on real data. This is a highly significant result to deal with practical scenarios. Finally, an adaptation of Siamese KPConv is realized to deal with change classification at PC scale. Our network overtakes the current state-of-the-art deep learning method by 23% and 15% of mean of IoU when assessed on synthetic and public Change3D datasets, respectively. The code is available at the following link: https://github.com/IdeGelis/torch-points3d-SiameseKPConv.Numéro de notice : A2023-147 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2023.02.001 Date de publication en ligne : 17/02/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.02.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102805
in ISPRS Journal of photogrammetry and remote sensing > vol 197 (March 2023) . - pp 274 - 291[article]Detection of growth change of young forest based on UAV RGB images at single-tree level / Xiaocheng Zhou in Forests, vol 14 n° 1 (January 2023)
[article]
Titre : Detection of growth change of young forest based on UAV RGB images at single-tree level Type de document : Article/Communication Auteurs : Xiaocheng Zhou, Auteur ; Hongyu Wang, Auteur ; Chongcheng Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 141 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Abies (genre)
[Termes IGN] âge du peuplement forestier
[Termes IGN] Chine
[Termes IGN] croissance des arbres
[Termes IGN] détection de changement
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] jeune arbre
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] surveillance forestièreRésumé : (auteur) With the rapid development of Unmanned Aerial Vehicle (UAV) technology, more and more UAVs have been used in forest survey. UAV (RGB) images are the most widely used UAV data source in forest resource management. However, there is some uncertainty as to the reliability of these data when monitoring height and growth changes of low-growing saplings in an afforestation plot via UAV RGB images. This study focuses on an artificial Chinese fir (Cunninghamia lancelota, named as Chinese Fir) young forest plot in Fujian, China. Divide-and-conquer (DAC) and the local maximum (LM) method for extracting seedling height are described in the paper, and the possibility of monitoring young forest growth based on low-cost UAV remote sensing images was explored. Two key algorithms were adopted and compared to extract the tree height and how it affects the young forest at single-tree level from multi-temporal UAV RGB images from 2019 to 2021. Compared to field survey data, the R2 of single saplings’ height extracted from digital orthophoto map (DOM) images of tree pits and original DSM information using a divide-and-conquer method reached 0.8577 in 2020 and 0.9968 in 2021, respectively. The RMSE reached 0.2141 in 2020 and 0.1609 in 2021. The R2 of tree height extracted from the canopy height model (CHM) via the LM method was 0.9462. The RMSE was 0.3354 in 2021. The results demonstrated that the survival rates of the young forest in the second year and the third year were 99.9% and 85.6%, respectively. This study shows that UAV RGB images can obtain the height of low sapling trees through a computer algorithm based on using 3D point cloud data derived from high-precision UAV images and can monitor the growth of individual trees combined with multi-stage UAV RGB images after afforestation. This research provides a fully automated method for evaluating the afforestation results provided by UAV RGB images. In the future, the universality of the method should be evaluated in more afforestation plots featuring different tree species and terrain. Numéro de notice : A2023-115 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f14010141 Date de publication en ligne : 10/01/2023 En ligne : https://doi.org/10.3390/f14010141 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102482
in Forests > vol 14 n° 1 (January 2023) . - n° 141[article]
Titre : Mobile mapping mesh change detection and update Type de document : Article/Communication Auteurs : Teng Wu , Auteur ; Bruno Vallet , Auteur ; Cédric Demonceaux, Auteur Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2023 Projets : PLaTINUM / Gouet-Brunet, Valérie Importance : 7 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] maillage par triangles
[Termes IGN] mosaïquage d'images
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] Stéréopolis
[Termes IGN] système de numérisation mobile
[Termes IGN] vision par ordinateurRésumé : (auteur) Mobile mapping, in particular, Mobile Lidar Scanning (MLS) is increasingly widespread to monitor and map urban scenes at city scale with unprecedented resolution and accuracy. The resulting point cloud sampling of the scene geometry can be meshed in order to create a continuous representation for different applications: visualization, simu- lation, navigation, etc. Because of the highly dynamic nature of these urban scenes, long term mapping should rely on frequent map updates. A trivial solution is to simply replace old data with newer data each time a new acquisition is made. However it has two drawbacks: 1) the old data may be of higher quality (resolution, precision) than the new and 2) the coverage of the scene might be different in various acquisitions, including varying occlusions. In this paper, we propose a fully automatic pipeline to address these two issues by formulating the problem of merging meshes with different quality, coverage and acquisition time. Our method is based on a combined distance and visibility based change detection, a time series analysis to assess the sustainability of changes, a mesh mosaicking based on a global boolean optimization and finally a stitching of the resulting mesh pieces boundaries with triangle strips. Finally, our method is demonstrated on Robotcar and Stereopolis datasets. Numéro de notice : P2023-003 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Preprint nature-HAL : Préprint DOI : 10.48550/arXiv.2303.07182 Date de publication en ligne : 13/03/2023 En ligne : https://doi.org/10.48550/arXiv.2303.07182 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102860 Semi-supervised label propagation for multi-source remote sensing image change detection / Fan Hao in Computers & geosciences, vol 170 (January 2023)PermalinkThe cellular automata approach in dynamic modelling of land use change detection and future simulations based on remote sensing data in Lahore Pakistan / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)PermalinkDecadal surface changes and displacements in Switzerland / Valentin Tertius Bickel in Journal of Geovisualization and Spatial Analysis, vol 6 n° 2 (December 2022)PermalinkSea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach / Hakan Oktay Aydınlı in Applied geomatics, vol 14 n° 4 (December 2022)PermalinkAutomatic vectorization of fluvial corridor features on historical maps to assess riverscape changes / Samuel Dunesme in Cartography and Geographic Information Science, vol 49 n° 6 (November 2022)PermalinkChange alignment-based image transformation for unsupervised heterogeneous change detection / Kuowei Xiao in Remote sensing, vol 14 n° 21 (November-1 2022)PermalinkChallenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images : A systematic review / Sahar S. Matin in Geocarto international, Vol 37 n° 21 ([01/10/2022])PermalinkDSNUNet: An improved forest change detection network by combining Sentinel-1 and Sentinel-2 images / Jiawei Jiang in Remote sensing, vol 14 n° 19 (October-1 2022)PermalinkMonitoring spatiotemporal soil moisture changes in the subsurface of forest sites using electrical resistivity tomography (ERT) / Julian Fäth in Journal of Forestry Research, vol 33 n° 5 (October 2022)PermalinkPyeo: A Python package for near-real-time forest cover change detection from Earth observation using machine learning / J.F. Roberts in Computers & geosciences, vol 167 (October 2022)Permalink