Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > extraction de traits caractéristiques
extraction de traits caractéristiquesSynonyme(s)extraction des caractéristiques extraction de primitiveVoir aussi |
Documents disponibles dans cette catégorie (844)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Disaster intensity-based selection of training samples for remote sensing building damage classification / Luis Moya in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Disaster intensity-based selection of training samples for remote sensing building damage classification Type de document : Article/Communication Auteurs : Luis Moya, Auteur ; Christian Geiss, Auteur ; Masakazu Hashimoto, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8288 - 8304 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] déformation d'édifice
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] dommage matériel
[Termes IGN] données de terrain
[Termes IGN] échantillonnage de données
[Termes IGN] image optique
[Termes IGN] inondation
[Termes IGN] séismeRésumé : (auteur) Previous applications of machine learning in remote sensing for the identification of damaged buildings in the aftermath of a large-scale disaster have been successful. However, standard methods do not consider the complexity and costs of compiling a training data set after a large-scale disaster. In this article, we study disaster events in which the intensity can be modeled via numerical simulation and/or instrumentation. For such cases, two fully automatic procedures for the detection of severely damaged buildings are introduced. The fundamental assumption is that samples that are located in areas with low disaster intensity mainly represent nondamaged buildings. Furthermore, areas with moderate to strong disaster intensities likely contain damaged and nondamaged buildings. Under this assumption, a procedure that is based on the automatic selection of training samples for learning and calibrating the standard support vector machine classifier is utilized. The second procedure is based on the use of two regularization parameters to define the support vectors. These frameworks avoid the collection of labeled building samples via field surveys and/or visual inspection of optical images, which requires a significant amount of time. The performance of the proposed method is evaluated via application to three real cases: the 2011 Tohoku-Oki earthquake–tsunami, the 2016 Kumamoto earthquake, and the 2018 Okayama floods. The resulted accuracy ranges between 0.85 and 0.89, and thus, it shows that the result can be used for the rapid allocation of affected buildings. Numéro de notice : A2021-711 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3046004 Date de publication en ligne : 13/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3046004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98615
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8288 - 8304[article]Extracting 3D indoor maps with any shape accurately using building information modeling data / Qi Qiu in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
[article]
Titre : Extracting 3D indoor maps with any shape accurately using building information modeling data Type de document : Article/Communication Auteurs : Qi Qiu, Auteur ; Mingjun Wang, Auteur ; Qingsheng Xie, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 700 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carroyage
[Termes IGN] carte d'intérieur
[Termes IGN] carte en 3D
[Termes IGN] conception assistée par ordinateur
[Termes IGN] détection de contours
[Termes IGN] grille
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] service fondé sur la positionRésumé : (auteur) Indoor maps lay the foundation for most indoor location-based services (LBS). Building Information Modeling (BIM) data contains multiple dimensional computer-aided design information. Some studies have utilized BIM data to automatically extract 3D indoor maps. A complete 3D indoor map consists of both floor-level maps and cross-floor paths. Currently, the floor-level indoor maps are mainly either grid-based maps or topological maps, and the cross-floor path generation schemes are not adaptive to building elements with irregular 3D shapes. To address these issues, this study proposes a novel scheme to extract an accurate 3D indoor map with any shape using BIM data. Firstly, this study extracts grid-based maps from BIM data and generates the topological maps directly through the grid-based maps using image thinning. A novel hybrid indoor map, termed Grid-Topological map, is then formed by the grid-based maps and topological maps jointly. Secondly, this study obtains the cross-floor paths from cross-floor building elements by a four-step process, namely X-Z projection, boundary extraction, X-Z topological path generation, and path-BIM intersection. Finally, experiments on eight typical types of cross-floor building elements and three multi-floor real-world buildings were conducted to prove the effectiveness of the proposed scheme, the average accuracy rates of the evaluated paths are higher than 88%. This study will advance the 3D indoor maps generation and inspire the application of indoor maps in indoor LBS, indoor robots, and 3D geographic information systems. Numéro de notice : A2021-778 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10100700 Date de publication en ligne : 14/10/2021 En ligne : https://doi.org/10.3390/ijgi10100700 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98842
in ISPRS International journal of geo-information > vol 10 n° 10 (October 2021) . - n° 700[article]GPRInvNet: Deep learning-based ground-penetrating radar data inversion for tunnel linings / Bin Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : GPRInvNet: Deep learning-based ground-penetrating radar data inversion for tunnel linings Type de document : Article/Communication Auteurs : Bin Liu, Auteur ; Yuxiao Ren, Auteur ; Hanchi Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8305 - 8325 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] cible cachée
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] géolocalisation par radar pénétrant GPR
[Termes IGN] reconstruction d'image
[Termes IGN] revêtement
[Termes IGN] tunnelRésumé : (auteur) A DNN architecture referred to as GPRInvNet was proposed to tackle the challenges of mapping the ground-penetrating radar (GPR) B-Scan data to complex permittivity maps of subsurface structures. The GPRInvNet consisted of a trace-to-trace encoder and a decoder. It was specially designed to take into account the characteristics of GPR inversion when faced with complex GPR B-Scan data, as well as addressing the spatial alignment issues between time-series B-Scan data and spatial permittivity maps. It displayed the ability to fuse features from several adjacent traces on the B-Scan data to enhance each trace, and then further condense the features of each trace separately. As a result, the sensitive zones on the permittivity maps spatially aligned to the enhanced trace could be reconstructed accurately. The GPRInvNet has been utilized to reconstruct the permittivity map of tunnel linings. A diverse range of dielectric models of tunnel linings containing complex defects has been reconstructed using GPRInvNet. The results have demonstrated that the GPRInvNet is capable of effectively reconstructing complex tunnel lining defects with clear boundaries. Comparative results with existing baseline methods also demonstrated the superiority of the GPRInvNet. For the purpose of generalizing the GPRInvNet to real GPR data, some background noise patches recorded from practical model testing were integrated into the synthetic GPR data to retrain the GPRInvNet. The model testing has been conducted for validation, and experimental results revealed that the GPRInvNet had also achieved satisfactory results with regard to the real data. Numéro de notice : A2021-710 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3046454 Date de publication en ligne : 13/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3046454 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98610
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8305 - 8325[article]A novel method based on deep learning, GIS and geomatics software for building a 3D city model from VHR satellite stereo imagery / Massimiliano Pepe in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
[article]
Titre : A novel method based on deep learning, GIS and geomatics software for building a 3D city model from VHR satellite stereo imagery Type de document : Article/Communication Auteurs : Massimiliano Pepe, Auteur ; Domenica Costantino, Auteur ; Vincenzo Saverio Alfio, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 697 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de Gram-Schmidt
[Termes IGN] apprentissage profond
[Termes IGN] ArcGIS
[Termes IGN] détection du bâti
[Termes IGN] empreinte
[Termes IGN] hauteur du bâti
[Termes IGN] image à très haute résolution
[Termes IGN] image Worldview
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle numérique de surface
[Termes IGN] Oman
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] reconnaissance automatique
[Termes IGN] système d'information géographiqueRésumé : (auteur) The aim of the paper is to identify a suitable method for the construction of a 3D city model from stereo satellite imagery. In order to reach this goal, it is necessary to build a workflow consisting of three main steps: (1) Increasing the geometric resolution of the color images through the use of pan-sharpening techniques, (2) identification of the buildings’ footprint through deep-learning techniques and, finally, (3) building an algorithm in GIS (Geographic Information System) for the extraction of the elevation of buildings. The developed method was applied to stereo imagery acquired by WorldView-2 (WV-2), a commercial Earth-observation satellite. The comparison of the different pan-sharpening techniques showed that the Gram–Schmidt method provided better-quality color images than the other techniques examined; this result was deduced from both the visual analysis of the orthophotos and the analysis of quality indices (RMSE, RASE and ERGAS). Subsequently, a deep-learning technique was applied for pan sharpening an image in order to extract the footprint of buildings. Performance indices (precision, recall, overall accuracy and the F1measure) showed an elevated accuracy in automatic recognition of the buildings. Finally, starting from the Digital Surface Model (DSM) generated by satellite imagery, an algorithm built in the GIS environment allowed the extraction of the building height from the elevation model. In this way, it was possible to build a 3D city model where the buildings are represented as prismatic solids with flat roofs, in a fast and precise way. Numéro de notice : A2021-801 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10100697 Date de publication en ligne : 14/10/2021 En ligne : https://doi.org/10.3390/ijgi10100697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98853
in ISPRS International journal of geo-information > vol 10 n° 10 (October 2021) . - n° 697[article]Automatic building detection with polygonizing and attribute extraction from high-resolution images / Samitha Daranagama in ISPRS International journal of geo-information, vol 10 n° 9 (September 2021)
[article]
Titre : Automatic building detection with polygonizing and attribute extraction from high-resolution images Type de document : Article/Communication Auteurs : Samitha Daranagama, Auteur ; Apichon Witayangkurn, Auteur Année de publication : 2021 Article en page(s) : n° 606 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de Douglas-Peucker
[Termes IGN] apprentissage profond
[Termes IGN] détection du bâti
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] lissage de courbe
[Termes IGN] orthophotoplan numérique
[Termes IGN] polygonation
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Buildings can be introduced as a fundamental element for forming a city. Therefore, up-to-date building maps have become vital for many applications, including urban mapping and urban expansion analysis. With the development of deep learning, segmenting building footprints from high-resolution remote sensing imagery has become a subject of intense study. Here, a modified version of the U-Net architecture with a combination of pre- and post-processing techniques was developed to extract building footprints from high-resolution aerial imagery and unmanned aerial vehicle (UAV) imagery. Data pre-processing with the logarithmic correction image enhancing algorithm showed the most significant improvement in the building detection accuracy for aerial images; meanwhile, the CLAHE algorithm improved the most concerning UAV images. This study developed a post-processing technique using polygonizing and polygon smoothing called the Douglas–Peucker algorithm, which made the building output directly ready to use for different applications. The attribute information, land use data, and population count data were applied using two open datasets. In addition, the building area and perimeter of each building were calculated as geometric attributes. Numéro de notice : A2021-684 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/ijgi10090606 Date de publication en ligne : 14/09/2021 En ligne : https://doi.org/10.3390/ijgi10090606 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98410
in ISPRS International journal of geo-information > vol 10 n° 9 (September 2021) . - n° 606[article]Double adaptive intensity-threshold method for uneven Lidar data to extract road markings / Chengming Ye in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)PermalinkThree-dimensional building change detection using object-based image analysis (case study: Tehran) / Fatemeh Tabib Mahmoudi in Applied geomatics, vol 13 n° 3 (September 2021)PermalinkUtilisation de l'apprentissage profond dans la modélisation 3D urbaine [Partie 1] / Hamza Ben Addou in Géomatique expert, n° 135 (septembre 2021)PermalinkMapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America / Bin Chen in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)PermalinkCNN-based RGB-D salient object detection: Learn, select, and fuse / Hao Chen in International journal of computer vision, vol 129 n° 7 (July 2021)PermalinkFlood depth mapping in street photos with image processing and deep neural networks / Bahareh Alizadeh Kharazi in Computers, Environment and Urban Systems, vol 88 (July 2021)PermalinkMulti-scale coal fire detection based on an improved active contour model from Landsat-8 satellite and UAV images / Yanyan Gao in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)PermalinkResearch on 3D model reconstruction based on a sequence of cross-sectional images / Zhiguo Dong in Machine Vision and Applications, vol 32 n°4 (July 2021)PermalinkReview of spectral indices for urban remote sensing / Akib Javed in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 7 (July 2021)PermalinkSemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images / Daifeng Peng in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)Permalink