Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > segmentation d'image
segmentation d'imageVoir aussi |
Documents disponibles dans cette catégorie (604)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic generation of outline-based representations of landmark buildings with distinctive shapes / Peng Ti in International journal of geographical information science IJGIS, vol 37 n° 4 (April 2023)
[article]
Titre : Automatic generation of outline-based representations of landmark buildings with distinctive shapes Type de document : Article/Communication Auteurs : Peng Ti, Auteur ; Tao Xiong, Auteur ; Yuhong Qiu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 864 - 884 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Bâti-3D
[Termes IGN] cartographie
[Termes IGN] contour
[Termes IGN] détection du bâti
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] raisonnement spatial
[Termes IGN] reconnaissance de formes
[Termes IGN] segmentation d'image
[Termes IGN] sémiologie graphique
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Landmark buildings are salient features for spatial cognition on maps. Distinctive outlines are the major visual characteristics that separate landmark buildings from their surrounding environments. The automatic symbolization of landmark outlines facilitates recognition and map production. As users often recognize landmarks by the outlines of their façades from a street view, this study proposes an automatic method for automatically generating representations of the outlines of landmark buildings in four steps: (1) extract outlines from street-view photographs using GrabCut method, (2) vectorize the extracted building outlines, (3) simplify outline shapes, and (4) symbolize the simplified building outlines in three dimensions (3D). We used the proposed method to generate test data with symbolized outlines for eight buildings in a real-world environment for a wayfinding experiment in which the subjects used the building representations to identify landmark buildings and evaluated their perception of the generated maps. The subjects successfully recognized these buildings based on the symbolized outlines on a map, expressed satisfaction with the manually generated 3D symbols, and reported the same or similar ease of building recognition using 2D or 3D symbolized outlines. Numéro de notice : A2023-207 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2143503 Date de publication en ligne : 11/11/2022 En ligne : https://doi.org/10.1080/13658816.2022.2143503 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103109
in International journal of geographical information science IJGIS > vol 37 n° 4 (April 2023) . - pp 864 - 884[article]Towards global scale segmentation with OpenStreetMap and remote sensing / Munazza Usmani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
[article]
Titre : Towards global scale segmentation with OpenStreetMap and remote sensing Type de document : Article/Communication Auteurs : Munazza Usmani, Auteur ; Maurizio Napolitano, Auteur ; Francesca Bovolo, Auteur Année de publication : 2023 Article en page(s) : n° 100031 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à haute résolution
[Termes IGN] information sémantique
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du solRésumé : (auteur) Land Use Land Cover (LULC) segmentation is a famous application of remote sensing in an urban environment. Up-to-date and complete data are of major importance in this field. Although with some success, pixel-based segmentation remains challenging because of class variability. Due to the increasing popularity of crowd-sourcing projects, like OpenStreetMap, the need for user-generated content has also increased, providing a new prospect for LULC segmentation. We propose a deep-learning approach to segment objects in high-resolution imagery by using semantic crowdsource information. Due to satellite imagery and crowdsource database complexity, deep learning frameworks perform a significant role. This integration reduces computation and labor costs. Our methods are based on a fully convolutional neural network (CNN) that has been adapted for multi-source data processing. We discuss the use of data augmentation techniques and improvements to the training pipeline. We applied semantic (U-Net) and instance segmentation (Mask R-CNN) methods and, Mask R–CNN showed a significantly higher segmentation accuracy from both qualitative and quantitative viewpoints. The conducted methods reach 91% and 96% overall accuracy in building segmentation and 90% in road segmentation, demonstrating OSM and remote sensing complementarity and potential for city sensing applications. Numéro de notice : A2023-148 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2023.100031 Date de publication en ligne : 16/02/2023 En ligne : https://doi.org/10.1016/j.ophoto.2023.100031 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102807
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 8 (April 2023) . - n° 100031[article]Automatic detection of thin oil films on water surfaces in ultraviolet imagery / Ming Xie in Photogrammetric record, vol 38 n° 181 (March 2023)
[article]
Titre : Automatic detection of thin oil films on water surfaces in ultraviolet imagery Type de document : Article/Communication Auteurs : Ming Xie, Auteur ; Xiurui Zhang, Auteur ; Ying Li, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 47 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection automatique
[Termes IGN] filtre optique
[Termes IGN] hydrocarbure
[Termes IGN] image AVIRIS
[Termes IGN] marée noire
[Termes IGN] niveau de gris (image)
[Termes IGN] rayonnement ultraviolet
[Termes IGN] segmentation d'image
[Termes IGN] seuillage binaire
[Termes IGN] surface de la merRésumé : (auteur) Among the various remote sensing technologies that have been applied to monitor oil spills on the sea surface, passive ultraviolet (UV) imaging is a controversial one that has raised some disputes in the community of oil spill remote sensing. As a result, the research and applications of oil spill detection using passive UV imaging have not been as developed as other methods. In order to clarify some existing questions on oil spill detection using passive UV remote sensing technology, this paper discusses the needs of thin oil film detection, examines the feasibility of thin oil film detection using passive UV imaging through field experiments under controlled conditions and validates it with the UV imagery derived from the airborne visible/infrared imaging spectrometer (AVIRIS) observation of the Deepwater Horizon oil spill. Two types of fully automatic models are designed to extract the thin oil films on the water surface: (1) a binary classification model based on an adaptive threshold; (2) an unsupervised image segmentation model based on image clustering and greyscale histogram analysis. The two models are tested on the UV imagery obtained through both field experiments and AVIRIS observations. The results indicate that the binary classification model can extract the thin oil films with reasonable accuracy under stable imaging conditions, while the unsupervised image clustering model can robustly detect the thin oil films at the cost of higher computational complexity. These results infer that passive UV imaging is an effective way to detect thin oil films and could be applied to provide early warning at the beginning stage of oil spills and reduce further damage. It may also be applied as a supplementary method for oil spill detection to achieve comprehensive oil spill monitoring. Numéro de notice : A2023-163 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12439 Date de publication en ligne : 09/02/2023 En ligne : https://doi.org/10.1111/phor.12439 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102866
in Photogrammetric record > vol 38 n° 181 (March 2023) . - pp 47 - 62[article]Domain adaptation in segmenting historical maps: A weakly supervised approach through spatial co-occurrence / Sidi Wu in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
[article]
Titre : Domain adaptation in segmenting historical maps: A weakly supervised approach through spatial co-occurrence Type de document : Article/Communication Auteurs : Sidi Wu, Auteur ; Konrad Schindler, Auteur ; Magnus Heitzler, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 199 - 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte ancienne
[Termes IGN] cartographie historique
[Termes IGN] classification dirigée
[Termes IGN] détection de changement
[Termes IGN] données anciennes
[Termes IGN] matrice de co-occurrence
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation d'image
[Termes IGN] vision par ordinateurRésumé : (auteur) Historical maps depict past states of the Earth’s surface and make it possible to trace the natural or anthropogenic evolution of geographic objects back through time. However, the state of the depicted reality is not the only source of change: maps of varying age can differ in terms of graphical design, and also in terms of storage conditions, physical ageing of pigments, and the scanning process for digitization. Consequently, a computer vision system learned from a specific (source) map series will often not generalize well to older or newer (target) maps, calling for domain adaptation. In the present paper we examine – to our knowledge for the first time – domain adaptation for segmenting historical maps. We argue that for geo-spatial data like maps, which are geo-localized by definition, the spatial co-occurrence of geographical objects provides a supervision signal for domain adaptation. Since only a subset of all mapped objects co-occur, and even those are not perfectly aligned due to both real topographic changes and variations in map generalization/production, they only provide weak supervision — still they can bring a substantial benefit over completely unsupervised domain adaptation methods. The core of our proposed method is a novel self-supervised co-occurrence network that detects co-occurring objects across maps (specifically, domains) with a novel loss function that allows for object changes and spatial misalignment. Experiments show that, for the task of segmenting hydrological objects such as rivers, lakes and wetlands, our system significantly outperforms two state-of-art baselines, even with limited supervision (e.g., 5%). The source code is publicly available at https://github.com/sian-wusidi/spatialcooccurrence. Numéro de notice : A2023-146 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2023.01.021 Date de publication en ligne : 14/02/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.01.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102804
in ISPRS Journal of photogrammetry and remote sensing > vol 197 (March 2023) . - pp 199 - 211[article]Topology-based individual tree segmentation for automated processing of terrestrial laser scanning point clouds / Xin Xu in International journal of applied Earth observation and geoinformation, vol 116 (February 2023)
[article]
Titre : Topology-based individual tree segmentation for automated processing of terrestrial laser scanning point clouds Type de document : Article/Communication Auteurs : Xin Xu, Auteur ; Federico Iuricich, Auteur ; Kim Calders, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103145 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction d'arbres
[Termes IGN] houppier
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] topologieRésumé : (auteur) Terrestrial laser scanning (TLS) is a ground-based approach to rapidly acquire 3D point clouds via Light Detection and Ranging (LiDAR) technologies. Quantifying tree-scale structure from TLS point clouds requires segmentation, yet there is a lack of automated methods available to the forest ecology community. In this work, we consider the problem of segmenting a forest TLS point cloud into individual tree point clouds. Different approaches have been investigated to identify and segment individual trees in a forest point cloud. Typically these methods require intensive parameter tuning and time-consuming user interactions, which has inhibited the application of TLS to large area research. Our goal is to define a new automated segmentation method that lifts these limitations. Our Topology-based Tree Segmentation (TTS) algorithm uses a new topological technique rooted in discrete Morse theory to segment input point clouds into single trees. TTS algorithm identifies distinctive tree structures (i.e., tree bottoms and tops) without user interactions. Tree tops and bottoms are then used to reconstruct single trees using the notion of relevant topological features. This mathematically well-established notion helps distinguish between noise and relevant tree features. To demonstrate the generality of our approach, we present an evaluation using multiple datasets, including different forest types and point densities. We also compare our TTS approach with open-source tree segmentation methods. The experiments show that we achieve a higher segmentation accuracy when performing point-by-point validation. Without expensive user interactions, TTS algorithm is promising for greater usage of TLS point clouds in the forest ecology community, such as fire risk and behavior modeling, estimating tree-level biodiversity structural traits, and above-ground biomass monitoring. Numéro de notice : A2023-129 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103145 Date de publication en ligne : 12/12/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103145 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102517
in International journal of applied Earth observation and geoinformation > vol 116 (February 2023) . - n° 103145[article]Geospatial-based machine learning techniques for land use and land cover mapping using a high-resolution unmanned aerial vehicle image / Taposh Mollick in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)PermalinkMachine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami / Riantini Virtriana in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)PermalinkFusion of SAR and multi-spectral time series for determination of water table depth and lake area in peatlands / Katrin Krzepek in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, vol 90 n° 6 (December 2022)PermalinkA semi-automatic method for extraction of urban features by integrating aerial images and LIDAR data and comparing its performance in areas with different feature structures (case study: comparison of the method performance in Isfahan and Toronto) / Masoud Azad in Applied geomatics, vol 14 n° 4 (December 2022)PermalinkImproving image segmentation with boundary patch refinement / Xiaolin Hu in International journal of computer vision, vol 130 n° 11 (November 2022)PermalinkMulti-level self-adaptive individual tree detection for coniferous forest using airborne LiDAR / Zhenyang Hui in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)PermalinkRaster-based method for building selection in the multi-scale representation of two-dimensional maps / Yilang Shen in Geocarto international, vol 37 n° 22 ([10/10/2022])PermalinkNovel algorithm based on geometric characteristics for tree branch skeleton extraction from LiDAR point cloud / Jie Yang in Forests, vol 13 n° 10 (October 2022)PermalinkThe iterative convolution–thresholding method (ICTM) for image segmentation / Dong Wang in Pattern recognition, vol 130 (October 2022)PermalinkHuman perception evaluation system for urban streetscapes based on computer vision algorithms with attention mechanisms / Yunhao Li in Transactions in GIS, vol 26 n° 6 (September 2022)Permalink