Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > SIFT (algorithme)
SIFT (algorithme)Synonyme(s)algorithme de LoweVoir aussi |
Documents disponibles dans cette catégorie (50)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
3D target detection using dual domain attention and SIFT operator in indoor scenes / Hanshuo Zhao in The Visual Computer, vol 38 n° 11 (November 2022)
[article]
Titre : 3D target detection using dual domain attention and SIFT operator in indoor scenes Type de document : Article/Communication Auteurs : Hanshuo Zhao, Auteur ; Dedong Yang, Auteur ; Jiankang Yu, Auteur Année de publication : 2022 Article en page(s) : pp3765 - 3774 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] jeu de données
[Termes IGN] objet 3D
[Termes IGN] scène intérieure
[Termes IGN] SIFT (algorithme)Résumé : (auteur) In a large number of real-life scenes and practical applications, 3D object detection is playing an increasingly important role. We need to estimate the position and direction of the 3D object in the real scene to complete the 3D object detection task. In this paper, we propose a new network architecture based on VoteNet to detect 3D point cloud targets. On the one hand, we use channel and spatial dual-domain attention module to enhance the features of the object to be detected while suppressing other useless features. On the other hand, the SIFT operator has scale invariance and the ability to resist occlusion and background interference. The PointSIFT module we use can capture information in different directions of point cloud in space, and is robust to shapes of different proportions, so as to better detect objects that are partially occluded. Our method is evaluated on the SUN-RGBD and ScanNet datasets of indoor scenes. The experimental results show that our method has better performance than VoteNet. Numéro de notice : A2022-840 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02217-z Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.1007/s00371-021-02217-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102042
in The Visual Computer > vol 38 n° 11 (November 2022) . - pp3765 - 3774[article]A relation-augmented embedded graph attention network for remote sensing object detection / Shu Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)
[article]
Titre : A relation-augmented embedded graph attention network for remote sensing object detection Type de document : Article/Communication Auteurs : Shu Tian, Auteur ; Lihong Kang, Auteur ; Xiangwei Xing, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1000718 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] graphe
[Termes IGN] image à haute résolution
[Termes IGN] information sémantique
[Termes IGN] relation sémantique
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal de graphes
[Termes IGN] SIFT (algorithme)Résumé : (auteur) Multiclass geospatial object detection in high spatial resolution remote sensing imagery (HSRI) is still a challenging task. The main reason is that the objects in HRSI are location-variable and semantic-confusable, which results in the difficulties in differentiating the complicated spatial patterns and deriving the implicitly semantic labels among different categories of objects. In this article, we propose a relation-augmented embedded graph attention network (EGAT), which enables the full exploitation of the underlying spatial and semantic relations among objects for improving the detection performance. Specifically, we first construct two sets of spatial and semantic graphs of objects–objects for object relations modeling. Second, a Siamese architecture-based embedding spatial and semantic graph attention network is designed for relations reasoning, which is implemented by introducing the long short-term memory (LSTM) mechanism into the EGAT, for learning the relations among different categories of intraobjects and interobjects. Driven by the spatial and semantic LSTM, the EGAT-LSTM can adaptively focus on the critical information of reason graphs for spatial–semantic correlation discrimination in the embedding non-Euclidean feature space. By this way, the EGAT-LSTM can effectively capture the global and local spatial–semantic relationships of objects–objects, and then produce relations-augmented features for improving the performance of object detection. We conduct comprehensive experiments on three public datasets for multiclass geospatial object detection. Our method achieves state-of-the-art performance, which demonstrates the superiority and effectiveness of the proposed method. Numéro de notice : A2022-766 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3073269 Date de publication en ligne : 18/05/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3073269 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101788
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 10 (October 2022) . - n° 1000718[article]Deep learning feature representation for image matching under large viewpoint and viewing direction change / Lin Chen in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)
[article]
Titre : Deep learning feature representation for image matching under large viewpoint and viewing direction change Type de document : Article/Communication Auteurs : Lin Chen, Auteur ; Christian Heipke, Auteur Année de publication : 2022 Article en page(s) : pp 94 -112 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image aérienne oblique
[Termes IGN] orientation d'image
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau neuronal siamois
[Termes IGN] SIFT (algorithme)Résumé : (auteur) Feature based image matching has been a research focus in photogrammetry and computer vision for decades, as it is the basis for many applications where multi-view geometry is needed. A typical feature based image matching algorithm contains five steps: feature detection, affine shape estimation, orientation assignment, description and descriptor matching. This paper contains innovative work in different steps of feature matching based on convolutional neural networks (CNN). For the affine shape estimation and orientation assignment, the main contribution of this paper is twofold. First, we define a canonical shape and orientation for each feature. As a consequence, instead of the usual Siamese CNN, only single branch CNNs needs to be employed to learn the affine shape and orientation parameters, which turns the related tasks from supervised to self supervised learning problems, removing the need for known matching relationships between features. Second, the affine shape and orientation are solved simultaneously. To the best of our knowledge, this is the first time these two modules are reported to have been successfully trained together. In addition, for the descriptor learning part, a new weak match finder is suggested to better explore the intra-variance of the appearance of matched features. For any input feature patch, a transformed patch that lies far from the input feature patch in descriptor space is defined as a weak match feature. A weak match finder network is proposed to actively find these weak match features; they are subsequently used in the standard descriptor learning framework. The proposed modules are integrated into an inference pipeline to form the proposed feature matching algorithm. The algorithm is evaluated on standard benchmarks and is used to solve for the parameters of image orientation of aerial oblique images. It is shown that deep learning feature based image matching leads to more registered images, more reconstructed 3D points and a more stable block geometry than conventional methods. The code is available at https://github.com/Childhoo/Chen_Matcher.git. Numéro de notice : A2022-502 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.06.003 Date de publication en ligne : 14/06/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.06.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101000
in ISPRS Journal of photogrammetry and remote sensing > vol 190 (August 2022) . - pp 94 -112[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022081 SL Revue Centre de documentation Revues en salle Disponible 081-2022083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt
Titre : Deep learning based 3D reconstruction: supervision and representation Type de document : Thèse/HDR Auteurs : François Darmon, Auteur ; Pascal Monasse, Directeur de thèse ; Mathieu Aubry, Directeur de thèse Editeur : Champs-sur-Marne : Ecole des Ponts ParisTech Année de publication : 2022 Importance : 115 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse de doctorat de l'Ecole des Ponts ParisTech, spécialité informatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] carte de profondeur
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction
[Termes IGN] géométrie épipolaire
[Termes IGN] maillage
[Termes IGN] modèle stéréoscopique
[Termes IGN] point d'intérêt
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motion
[Termes IGN] voxelIndex. décimale : THESE Thèses et HDR Résumé : (auteur) 3D reconstruction is a long standing problem in computer vision. Yet, state-of-the-art methods still struggle when the images used have large illumination changes, many occlusions or limited textures. Deep Learning holds promises of improving 3D reconstruction in such setups, but classical methods still produce the best results. In this thesis we analyse the specificity of deep learning applied to multiview 3D reconstruction and introduce new deep learning based methods.The first contribution of this thesis is an analysis of the possible supervision for training Deep Learning models for sparse image matching. We introduce a two-step algorithm that first computes low resolution matches using deep learning and then matches classical local features inside the matches regions. We analyze several levels of supervision and show that our new epipolar supervision leads to the best results.The second contribution is also a study of supervision for Deep Learning but applied to another scenario: calibrated 3D reconstruction in the wild. We show that existing unsupervised methods do not work on such data and we introduce a new training technique that solves this issue. We then exhaustively compare unsupervised approach and supervised approaches with different network architectures and training data.Finally, our third contribution is about data representation. Neural implicit representation were recently used for image rendering. We adapt this representation to the multiview reconstruction problem and we introduce a new method that, similar to classical 3D reconstruction techniques, optimizes photo-consistency between projections of multiple images. Our approach outperforms state-of-the-art by a large margin. Note de contenu : 1- Introduction
2- Background
3- Deep learning for guiding keypoint matching
4- Deep Learning based Multi-View Stereo in the wild
5- Multi-view reconstruction with implicit surfaces and patch warping
6- ConclusionNuméro de notice : 24085 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Ponts ParisTech : 2022 Organisme de stage : Laboratoire d'Informatique Gaspard-Monge LIGM DOI : sans En ligne : https://www.theses.fr/2022ENPC0024 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102473 Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features / Bai Zhu in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
[article]
Titre : Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features Type de document : Article/Communication Auteurs : Bai Zhu, Auteur ; Yuanxin Ye, Auteur ; Liang Zhou, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 129 - 147 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] correction géométrique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] élément d'orientation externe
[Termes IGN] enregistrement de données
[Termes IGN] filtre de Gabor
[Termes IGN] image aérienne
[Termes IGN] recalage d'image
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motionRésumé : (auteur) Co-registration of aerial imagery and Light Detection and Ranging (LiDAR) data is quite challenging because the different imaging mechanisms produce significant geometric and radiometric distortions between the two multimodal data sources. To address this problem, we propose a robust and effective coarse-to-fine registration method that is conducted in two stages utilizing spatial constraints and Gabor structural features. In the first stage, the LiDAR point cloud data is transformed into an intensity map that is used as the reference image. Then, coarse registration is completed by designing a partition-based Features from Accelerated Segment Test (FAST) operator to extract the uniformly distributed interest points in the aerial images and thereafter performing a local geometric correction based on the collinearity equations using the exterior orientation parameters (EoPs). The coarse registration aims to provide a reliable spatial geometry relationship for the subsequent fine registration and is designed to eliminate rotation and scale changes, as well as making only a few translation differences exist between the images. In the second stage, a novel feature descriptor called multi-Scale and multi-Directional Features of odd Gabor (SDFG) is first built to capture the multi-scale and multi-directional structural properties of the images. Then, the three-dimensional (3D) phase correlation (PC) of the SDFG descriptor is established to detect the control points (CPs) between the aerial and LiDAR intensity image in the frequency domain, where the image matching is accelerated by the 3D Fast Fourier Transform (FFT) technique. Finally, the obtained CPs not only are employed to refine the EoPs, but also are used to achieve the fine registration of the aerial images and LiDAR data. We conduct experiments to verify the robustness of the proposed registration method using three sets of aerial images and LiDAR data with different scene coverage. Experimental results show that the proposed method is robust to geometric distortions and radiometric changes. Moreover, it achieves the registration accuracy of less than 2 pixels for all cases, which outperforms the current four state-of-the-art methods, demonstrating its superior registration performance. Numéro de notice : A2021-773 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.09.010 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.09.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98830
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 129 - 147[article]An automatic workflow for orientation of historical images with large radiometric and geometric differences / Ferdinand Maiwald in Photogrammetric record, vol 36 n° 174 (June 2021)PermalinkResearch on feature extraction method of indoor visual positioning image based on area division of foreground and background / Ping Zheng in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)PermalinkVisual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors / Longyu Zhang in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)PermalinkAutomated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)PermalinkFeature detection and description for image matching: from hand-crafted design to deep learning / Lin Chen in Geo-spatial Information Science, vol 24 n° 1 (March 2021)PermalinkImproving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / Roholah Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)PermalinkGuided feature matching for multi-epoch historical image blocks pose estimation / Lulin Zhang in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)PermalinkStructure from motion for complex image sets / Mario Michelini in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)PermalinkAn Illumination Insensitive descriptor combining the CSLBP features for street view images in augmented reality: experimental studies / Zejun Xiang in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)PermalinkIndoor positioning using PnP problem on mobile phone images / Hana Kubickova in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)Permalink