Descripteur
Termes IGN > mathématiques > statistique mathématique
statistique mathématique
Commentaire :
>>
biométrie,
échantillonnage (statistique), probabilité, statistique. >>Terme(s) spécifique(s) : analyse de régression, analyse de variance, analyse des données, analyse multivariée, analyse séquentielle, calcul d'erreur, carré latin, corrélation (statistique), efficacité asymptotique (statistique), fonction pseudo-aléatoire, loi des grands nombres, modèle linéaire (statistique), modèle non linéaire (statistique), moindre carré, physique statistique, plan d'expérience, rang et sélection (statistique), rupture (statistique), SAS (logiciel), série chronologique, statistique non paramétrique, statistique robuste, tableau de contingence, test d'hypothèses (statistique), statistique stellaire. Equiv. LCSH : Mathematical statistics. Domaine(s) : 510. |
Documents disponibles dans cette catégorie (6658)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Prediction of suspended sediment concentration using hybrid SVM-WOA approaches / Sandeep Samantaray in Geocarto international, vol 37 n° 19 ([15/09/2022])
[article]
Titre : Prediction of suspended sediment concentration using hybrid SVM-WOA approaches Type de document : Article/Communication Auteurs : Sandeep Samantaray, Auteur ; Abinash Sahoo, Auteur Année de publication : 2022 Article en page(s) : pp 5609 - 5635 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] alluvion
[Termes IGN] bassin hydrographique
[Termes IGN] fonction de base radiale
[Termes IGN] Inde
[Termes IGN] modèle de simulation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] optimisation par essaim de particules
[Termes IGN] régression
[Termes IGN] sédiment
[Termes IGN] séparateur à vaste margeRésumé : (auteur) Suspended sediment concentration (SSC) is one of the primary reasons with respect to watersheds or river basins, which must be assessed in a correct manner so that it will help decision makers to make right decisions regarding hydraulic structure, flash-flood, flood-mitigation of the basin. The present research evaluated efficacy of a hybrid model integrating Support Vector Machine with Whale optimization algorithm (SVM-WOA) for predicting SSC at Sundargarh and Salebhata stations in Mahanadi River, India. Various quantitative statistical evaluation constrains are applied to evacuate the model performance. Also, model performance of SVM-WOA is compared with SVM-PSO (Particle Swarm Optimization) and conventional SVM and RBFN (Radial Basis Function Network) models. The results reveal that, SVM-WOA performed superiorly in comparison to SVM-PSO, SVM and RBFN models for five different input scenarios during both training and testing phases. Hence, it is recommended to apply SVM-WOA as an appropriate technique for hydrological simulation at the basin. Numéro de notice : A2022-707 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1920638 Date de publication en ligne : 17/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1920638 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101577
in Geocarto international > vol 37 n° 19 [15/09/2022] . - pp 5609 - 5635[article]Regional climate moderately influences species-mixing effect on tree growth-climate relationships and drought resistance for beech and pine across Europe / Géraud de Streel in Forest ecology and management, vol 520 (September-15 2022)
[article]
Titre : Regional climate moderately influences species-mixing effect on tree growth-climate relationships and drought resistance for beech and pine across Europe Type de document : Article/Communication Auteurs : Géraud de Streel, Auteur ; François Lebourgeois, Auteur ; Christian Ammer, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120317 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] Bootstrap (statistique)
[Termes IGN] climat
[Termes IGN] coefficient de corrélation
[Termes IGN] dendrochronologie
[Termes IGN] échantillonnage
[Termes IGN] Europe (géographie politique)
[Termes IGN] évapotranspiration
[Termes IGN] Fagus sylvatica
[Termes IGN] peuplement mélangé
[Termes IGN] Pinus sylvestris
[Termes IGN] région
[Termes IGN] sécheresse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Increasing species diversity is considered a promising strategy to mitigate the negative impacts of global change on forests. However, the interactions between regional climate conditions and species-mixing effects on climate-growth relationships and drought resistance remain poorly documented. In this study, we investigated the patterns of species-mixing effects over a large gradient of environmental conditions throughout Europe for European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.), two species with contrasted ecological traits. We hypothesized that across large geographical scales, the difference of climate-growth relationships and drought resistance between pure and mixed stands would be dependent on regional climate. We used tree ring chronologies derived from 1143 beech and 1164 pine trees sampled in 30 study sites, each composed of one mixed stand of beech and pine and of the two corresponding pure stands located in similar site conditions. For each site and stand, we used Bootstrapped Correlation Coefficients (BCCs) on standardized chronologies and growth reduction during drought years on raw chronologies to analyze the difference in climate-tree growth relationships and resistance to drought between pure and mixed stands. We found consistent large-scale spatial patterns of climate-growth relationships. Those patterns were similar for both species. With the exception of the driest climates where pure and mixed beech stands tended to display differences in growth correlation with the main climatic drivers, the mixing effects on the BCCs were highly variable, resulting in the lack of a coherent response to mixing. No consistent species-mixing effect on drought resistance was found within and across climate zones. On average, mixing had no significant effect on drought resistance for neither species, yet it increased pine resistance in sites with higher climatic water balance in autumn. Also, beech and pine most often differed in the timing of their drought response within similar sites, irrespective of the regional climate, which might increase the temporal stability of growth in mixed compared to pure stands. Our results showed that the impact of species mixing on tree response to climate did not strongly differ between groups of sites with distinct climate characteristics and climate-growth relationships, indicating the interacting influences of species identity, stand characteristics, drought events characteristics as well as local site conditions. Numéro de notice : A2022-557 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120317 Date de publication en ligne : 17/06/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120317 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101172
in Forest ecology and management > vol 520 (September-15 2022) . - n° 120317[article]The FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation / Shuaijun Liu in Remote sensing of environment, vol 279 (September-15 2022)
[article]
Titre : The FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation Type de document : Article/Communication Auteurs : Shuaijun Liu, Auteur ; Junxiong Zhou, Auteur ; Yuean Qiu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113111 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] autocorrélation
[Termes IGN] bande spectrale
[Termes IGN] détection de changement
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion de données
[Termes IGN] image Landsat-OLI
[Termes IGN] image Terra-MODIS
[Termes IGN] réflectance de surface
[Termes IGN] réflectance spectrale
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] régression multipleRésumé : (auteur) Over the past decade, spatiotemporal fusion has become an indispensable tool for monitoring land surface dynamics due to its promising ability to produce surface reflectance products with both high spatial and temporal resolutions. However, existing fusion methods usually generate multispectral band products by predicting each spectral band separately, so the useful information of spectral autocorrelation within the spectrum has been ignored and waits to be exploited. To address this issue, we propose a novel spatiotemporal fusion method, the spatiotemporal Fusion Incorrporting Spectral autocorrelaTion (FIRST) model, to fully utilize the multiple spectral bands of surface reflectance products. Compared with other fusion methods, the model has three distinct advantages: (1) it utilizes spectral autocorrelation in a many-to-many regression framework that simultaneously inputs and predicts multispectral bands without the collinearity effect; (2) it maintains high fusion accuracy when the spatiotemporal variation is large with acceptable computational efficiency; and (3) it can produce robust results even with input images contaminated by haze and thin clouds. We tested the FIRST model at several experimental sites and compared it with four typical methods, the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal DAta Fusion (FSDAF) model, the regression model Fitting, spatial Filtering and residual Compensation (Fit-FC) model and the enhanced STARFM (ESTARFM). The results demonstrate that FIRST yields better overall performance for its simple and effective technical principles. FIRST is thus expected to provide high-quality remotely sensed data with high spatial resolution and frequent observations for various applications. Numéro de notice : A2022-554 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113111 Date de publication en ligne : 16/06/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113111 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101166
in Remote sensing of environment > vol 279 (September-15 2022) . - n° 113111[article]Adaptive block modeling of time dependent variations of datum reference points in a tectonically active area / Chun-Yun Chou in Survey review, vol 54 n° 386 (September 2022)
[article]
Titre : Adaptive block modeling of time dependent variations of datum reference points in a tectonically active area Type de document : Article/Communication Auteurs : Chun-Yun Chou, Auteur ; Jen-Yu Han, Auteur Année de publication : 2022 Article en page(s) : pp 404 - 419 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] analyse de groupement
[Termes IGN] angle d'Euler
[Termes IGN] champ de vitesse
[Termes IGN] Cinématique
[Termes IGN] collocation par moindres carrés
[Termes IGN] données GNSS
[Termes IGN] formule d'Euler
[Termes IGN] matrice de covariance
[Termes IGN] rotation
[Termes IGN] série temporelle
[Termes IGN] station GNSS
[Termes IGN] système de référence local
[Termes IGN] Taïwan
[Termes IGN] tectonique des plaques
[Termes IGN] variation temporelleRésumé : (auteur) Although a dynamic or semi-dynamic datum has been adopted in some countries, it remains a challenge if a long-term stable datum is to be established in a tectonic active area. This study presents an approach to realistically reflect the time dependent behaviors of ground reference points while maintaining the long-term stability of a datum. An adaptive approach coupled with the Euler motion model is proposed for dividing an area into blocks. A least-squares collocation is then applied for modeling the residual velocities in each block. A case study using the data from 375 continuously operated GNSS stations in Taiwan is presented. It is illustrated that the complex surface kinematics in this region can be divided into three blocks. Significant reductions up to 64% of residual velocities were obtained. This shows that a stable datum can be established in a region with active and complicated surface kinematics by implementing the proposed. Numéro de notice : A2022-658 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1949194 Date de publication en ligne : 12/07/2021 En ligne : https://doi.org/10.1080/00396265.2021.1949194 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101509
in Survey review > vol 54 n° 386 (September 2022) . - pp 404 - 419[article]An improved multi-task pointwise network for segmentation of building roofs in airborne laser scanning point clouds / Chaoquan Zhang in Photogrammetric record, vol 37 n° 179 (September 2022)
[article]
Titre : An improved multi-task pointwise network for segmentation of building roofs in airborne laser scanning point clouds Type de document : Article/Communication Auteurs : Chaoquan Zhang, Auteur ; Hongchao Fan, Auteur Année de publication : 2022 Article en page(s) : pp 260 - 284 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage profond
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] fusion de données
[Termes IGN] Norvège
[Termes IGN] Ransac (algorithme)
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] toitRésumé : (auteur) Roof plane segmentation is an essential step in the process of 3D building reconstruction from airborne laser scanning (ALS) point clouds. The existing approaches either rely on human intervention to select the appropriate input parameters for different data-sets or they are not automatic and efficient. To tackle these issues, an improved multi-task pointwise network is proposed to simultaneously segment instances (that is, individual roof planes) and semantics (that is, groups of roof planes with similar geometric shapes) in point clouds. PointNet++ is used as a backbone network to extract robust features in the first step. The features from semantics branch are then added to the instance branch to facilitate the learning of instance embeddings. After that, a feature fusion module is added to the semantics branch to acquire more discriminative features from the backbone network. To increase the accuracy of semantic predictions, fused semantic features of the points belonging to the same instance are aggregated together. Finally, a mean-shift clustering algorithm is employed on instance embeddings to produce the instance predictions. Furthermore, a new roof data-set (called RoofNTNU) is established by taking ALS point clouds as training data for automatic and more general segmentation. Experiments on the new roof data-set show that the method achieves promising segmentation results: the mean precision (mPrec) of 96.2% for the instance segmentation task and mean accuracy (mAcc) of 94.4% for the semantic segmentation task. Numéro de notice : A2022-936 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12420 Date de publication en ligne : 13/07/2022 En ligne : https://doi.org/10.1111/phor.12420 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102682
in Photogrammetric record > vol 37 n° 179 (September 2022) . - pp 260 - 284[article]Analytical method for high-precision seabed surface modelling combining B-spline functions and Fourier series / Tyler Susa in Marine geodesy, vol 45 n° 5 (September 2022)PermalinkAssessing road accidents in spatial context via statistical and non-statistical approaches to detect road accident hotspot using GIS / Yegane Khosravi in Geodetski vestnik, vol 66 n° 3 (September - November 2022)PermalinkAssessing the impact of forest structure disturbances on the arboreal movement and energetics of orangutans : An agent-based modeling approach / Kirana Widyastuti in Frontiers in Ecology and Evolution, vol 2022 ([01/09/2022])PermalinkAutomated detection of discontinuities in EUREF permanent GNSS network stations due to earthquake events / Sergio Baselga in Survey review, vol 54 n° 386 (September 2022)PermalinkBenchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest / Daniel Kükenbrink in International journal of applied Earth observation and geoinformation, vol 113 (September 2022)PermalinkClassification of pine wilt disease at different infection stages by diagnostic hyperspectral bands / Niwen Li in Ecological indicators, vol 142 (September 2022)PermalinkCrowdsourcing-based application to solve the problem of insufficient training data in deep learning-based classification of satellite images / Ekrem Saralioglu in Geocarto international, vol 37 n° 18 ([01/09/2022])PermalinkDeep image deblurring: A survey / Kaihao Zhang in International journal of computer vision, vol 130 n° 9 (September 2022)PermalinkDeep learning method for Chinese multisource point of interest matching / Pengpeng Li in Computers, Environment and Urban Systems, vol 96 (September 2022)PermalinkFlood vulnerability and buildings’ flood exposure assessment in a densely urbanised city: comparative analysis of three scenarios using a neural network approach / Quoc Bao Pham in Natural Hazards, vol 113 n° 2 (September 2022)PermalinkForest tree species classification based on Sentinel-2 images and auxiliary data / Haotian You in Forests, vol 13 n° 9 (september 2022)PermalinkA general model for creating robust choropleth maps / Wangshu Mu in Computers, Environment and Urban Systems, vol 96 (September 2022)PermalinkGeoscience Knowledge Graph (GeoKG): Development, construction and challenges / Xueying Zhang in Transactions in GIS, vol 26 n° 6 (September 2022)PermalinkHuman perception evaluation system for urban streetscapes based on computer vision algorithms with attention mechanisms / Yunhao Li in Transactions in GIS, vol 26 n° 6 (September 2022)PermalinkIdentification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators / Luis Izquierdo-Horna in Computers, Environment and Urban Systems, vol 96 (September 2022)PermalinkImpact assessment of the seasonal hydrological loading on geodetic movement and seismicity in Nepal Himalaya using GRACE and GNSS measurements / Devendra Shashikant Nagale in Geodesy and Geodynamics, vol 13 n° 5 (September 2022)PermalinkLearning indoor point cloud semantic segmentation from image-level labels / Youcheng Song in The Visual Computer, vol 38 n° 9 (September 2022)PermalinkA map matching-based method for electric vehicle charging station placement at directional road segment level / Zhoulin Yu in Sustainable Cities and Society, vol 84 (September 2022)PermalinkMapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression / Haoyu Wang in Remote sensing of environment, vol 278 (September 2022)PermalinkMapping individual abandoned houses across cities by integrating VHR remote sensing and street view imagery / Shengyuan Zou in International journal of applied Earth observation and geoinformation, vol 113 (September 2022)PermalinkMICROSCOPE Mission: Final Results of the Test of the Equivalence Principle / Pierre Touboul in Physical Review Letters, vol 129 n° 12 ([01/09/2022])PermalinkPoint-of-interest detection from Weibo data for map updating / Xue Yang in Transactions in GIS, vol 26 n° 6 (September 2022)PermalinkSimulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices / Najmeh Mozaffaree Pour in Environmental Monitoring and Assessment, vol 194 n° 9 (September 2022)PermalinkStructured binary neural networks for image recognition / Bohan Zhuang in International journal of computer vision, vol 130 n° 9 (September 2022)PermalinkTowards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping / Sandro Martinis in Remote sensing of environment, vol 278 (September 2022)PermalinkEvapotranspiration mapping of cotton fields in Brazil: comparison between SEBAL and FAO-56 method / Juan Vicente Liendro Moncada in Geocarto international, Vol 37 n° 17 ([20/08/2022])PermalinkComparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs / Douglas Stefanello Facco in Geocarto international, vol 37 n° 16 ([15/08/2022])PermalinkExploring tree growth allometry using two-date terrestrial laser scanning / Tuomas Yrttimaa in Forest ecology and management, vol 518 (August-15 2022)Permalink3D building reconstruction from single street view images using deep learning / Hui En Pang in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)Permalink3D semantic scene completion: A survey / Luis Roldão in International journal of computer vision, vol 130 n° 8 (August 2022)PermalinkAn automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images / Kwanghun Choi in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)PermalinkCharacterizing the calibration domain of remote sensing models using convex hulls / Jean-Pierre Renaud in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)PermalinkCost distances and least cost paths respond differently to cost scenario variations: a sensitivity analysis of ecological connectivity modeling / Paul Savary in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)PermalinkCrown allometry and growing space requirements of four rare domestic tree species compared to oak and beech: implications for adaptive forest management / Julia Schmucker in European Journal of Forest Research, vol 141 n° 4 (August 2022)PermalinkDeep learning feature representation for image matching under large viewpoint and viewing direction change / Lin Chen in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)PermalinkEffective CBIR based on hybrid image features and multilevel approach / D. Latha in Multimedia tools and applications, vol 81 n° 20 (August 2022)PermalinkEstimating crop type and yield of small holder fields in Burkina Faso using multi-day Sentinel-2 / Akiko Elders in Remote Sensing Applications: Society and Environment, RSASE, Vol 27 (August 2022)PermalinkFiltering airborne LIDAR data by using fully convolutional networks / Abdullah Varlik in Survey review, vol 55 n° 388 (January 2023)PermalinkFull-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR / Xue Ji in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)PermalinkGenerating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes / Christian Kruse in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)PermalinkGNSS integer ambiguity posterior probability calculation with controllable accuracy / Zemin Wu in Journal of geodesy, vol 96 n° 8 (August 2022)PermalinkHyperspectral unmixing using transformer network / Preetam Ghosh in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)PermalinkIncorporation of digital elevation model, normalized difference vegetation index, and Landsat-8 data for land use land cover mapping / Jwan Al-Doski in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 8 (August 2022)PermalinkMapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series / Maximilian Lange in Remote sensing of environment, vol 277 (August 2022)PermalinkMeasuring COVID-19 vulnerability for Northeast Brazilian municipalities: Social, economic, and demographic factors based on multiple criteria and spatial analysis / Ciro José Jardim De Figueiredo in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)PermalinkA pipeline for automated processing of Corona KH-4 (1962-1972) stereo imagery / Sajid Ghuffar in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)PermalinkPredicting vegetation stratum occupancy from airborne LiDAR data with deep learning / Ekaterina Kalinicheva in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)PermalinkSTICC: a multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity / Yuhao Kang in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)PermalinkThe influence of data density and integration on forest canopy cover mapping using Sentinel-1 and Sentinel-2 time series in Mediterranean oak forests / Vahid Nasiri in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)PermalinkTracing drought effects from the tree to the stand growth in temperate and Mediterranean forests: insights and consequences for forest ecology and management / Hans Pretzsch in European Journal of Forest Research, vol 141 n° 4 (August 2022)PermalinkTracking annual dynamics of mangrove forests in mangrove National Nature Reserves of China based on time series Sentinel-2 imagery during 2016–2020 / Rong Zhang in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)PermalinkTransfer learning from citizen science photographs enables plant species identification in UAV imagery / Salim Soltani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)PermalinkA model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway / Reza Sanayeia in Geocarto international, vol 37 n° 14 ([20/07/2022])PermalinkSegmentation and sampling method for complex polyline generalization based on a generative adversarial network / Jiawei Du in Geocarto international, vol 37 n° 14 ([20/07/2022])PermalinkGNSSseg, a statistical method for the segmentation of daily GNSS IWV time series / Annarosa Quarello in Remote sensing, vol 14 n° 14 (July-2 2022)PermalinkAbout tree height measurement: Theoretical and practical issues for uncertainty quantification and mapping / Samuele De petris in Forests, vol 13 n° 7 (July 2022)PermalinkCan machine learning improve small area population forecasts? A forecast combination approach / Irina Grossman in Computers, Environment and Urban Systems, vol 95 (July 2022)PermalinkA comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia / Rofiat Bunmi Mudashiru in Natural Hazards, vol 112 n° 3 (July 2022)PermalinkDetection of diseased pine trees in unmanned aerial vehicle images by using deep convolutional neural networks / Gensheng Hu in Geocarto international, vol 37 n° 12 ([01/07/2022])PermalinkDiscriminative information restoration and extraction for weakly supervised low-resolution fine-grained image recognition / Tiantian Yan in Pattern recognition, vol 127 (July 2022)PermalinkEffects of offsets and outliers on the sea level trend at Antalya 2 tide gauge within the Eastern Mediterranean Sea / Mehmet Emin Ayhan in Marine geodesy, vol 45 n° 4 (July 2022)PermalinkEstimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network / Alex David Singleton in Computers, Environment and Urban Systems, vol 95 (July 2022)PermalinkA framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)PermalinkFusion of GNSS and InSAR time series using the improved STRE model: applications to the San Francisco bay area and Southern California / Huineng Yan in Journal of geodesy, vol 96 n° 7 (July 2022)PermalinkGeographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis / Chuan Yin in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)PermalinkGlobal forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis / Jinpei Chen in GPS solutions, vol 26 n° 3 (July 2022)PermalinkImpact of offsets on assessing the low-frequency stochastic properties of geodetic time series / Kevin Gobron in Journal of geodesy, vol 96 n° 7 (July 2022)PermalinkImproving remote sensing classification: A deep-learning-assisted model / Tsimur Davydzenka in Computers & geosciences, vol 164 (July 2022)PermalinkInvestigating the role of image retrieval for visual localization / Martin Humenberger in International journal of computer vision, vol 130 n° 7 (July 2022)PermalinkLidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks / Aurélien Brun in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)PermalinkA lightweight network with attention decoder for real-time semantic segmentation / Kang Wang in The Visual Computer, vol 38 n° 7 (July 2022)PermalinkOutliers and uncertainties in GNSS ZTD estimates from double-difference processing and precise point positioning / Katarzyna Stępniak in GPS solutions, vol 26 n° 3 (July 2022)PermalinkPolyline simplification based on the artificial neural network with constraints of generalization knowledge / Jiawei Du in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)PermalinkA second-order attention network for glacial lake segmentation from remotely sensed imagery / Shidong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)PermalinkSemantic feature-constrained multitask siamese network for building change detection in high-spatial-resolution remote sensing imagery / Qian Shen in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)PermalinkSimulation-driven 3D forest growth forecasting based on airborne topographic LiDAR data and shading / Štefan Kohek in International journal of applied Earth observation and geoinformation, vol 111 (July 2022)PermalinkStreet-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)PermalinkEncoder-decoder structure with multiscale receptive field block for unsupervised depth estimation from monocular video / Songnan Chen in Remote sensing, Vol 14 n° 12 (June-2 2022)PermalinkEstimating feature extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using and object-based technique / Syaza Rozali in Geocarto international, vol 37 n° 11 ([15/06/2022])PermalinkRisk assessment and prediction of forest health for effective geo-environmental planning and monitoring of mining affected forest area in hilltop region / Narayan Kayet in Geocarto international, vol 37 n° 11 ([15/06/2022])Permalink3D browsing of wide-angle fisheye images under view-dependent perspective correction / Mingyi Huang in Photogrammetric record, vol 37 n° 178 (June 2022)PermalinkAjustement en bloc des données de stations totales et de récepteurs GNSS dans les études de déformation / Joël Van Cranenbroeck in XYZ, n° 171 (juin 2022)PermalinkAnalysis of structure from motion and airborne laser scanning features for the evaluation of forest structure / Alejandro Rodríguez-Vivancos in European Journal of Forest Research, vol 141 n° 3 (June 2022)PermalinkArtificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data / Saeideh Sahebi Vayghan in Geocarto international, vol 37 n° 10 ([01/06/2022])PermalinkAssessing and mapping landslide susceptibility using different machine learning methods / Osman Orhan in Geocarto international, vol 37 n° 10 ([01/06/2022])PermalinkBeyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification / Yongqiang Mao in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)PermalinkCharacteristics of disease maps of zoonoses: A scoping review and a recommendation for a reporting guideline for disease maps / Inthuja Selvaratnam in Cartographica, vol 57 n° 2 (Summer 2022)PermalinkCombination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve / Michael Lechner in Remote sensing, vol 14 n° 11 (June-1 2022)PermalinkContext-aware network for semantic segmentation toward large-scale point clouds in urban environments / Chun Liu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)PermalinkDART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images / Yingjie Wang in Remote sensing of environment, vol 274 (June 2022)PermalinkDetecting interchanges in road networks using a graph convolutional network approach / Min Yang in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)PermalinkDetecting spatiotemporal traffic events using geosocial media data / Shishuo Xu in Computers, Environment and Urban Systems, vol 94 (June 2022)PermalinkExploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference / Xiao Huang in Transactions in GIS, vol 26 n° 4 (June 2022)PermalinkExtracting the urban landscape features of the historic district from street view images based on deep learning: A case study in the Beijing Core area / Siming Yin in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)PermalinkFeature-selection high-resolution network with hypersphere embedding for semantic segmentation of VHR remote sensing images / Hanwen Xu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)Permalink