Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > Ransac (algorithme)
Ransac (algorithme)Synonyme(s)RANdom SAmple ConsensusVoir aussi |
Documents disponibles dans cette catégorie (62)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic registration method of multi-source point clouds based on building facades matching in urban scenes / Yumin Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)
[article]
Titre : Automatic registration method of multi-source point clouds based on building facades matching in urban scenes Type de document : Article/Communication Auteurs : Yumin Tan, Auteur ; Yanzhe Shi, Auteur ; Yunxin Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 767 - 782 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] appariement de formes
[Termes IGN] appariement de points
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] façade
[Termes IGN] fusion de données multisource
[Termes IGN] modélisation 3D
[Termes IGN] photogrammétrie aérienne
[Termes IGN] points registration
[Termes IGN] Ransac (algorithme)
[Termes IGN] recalage de données localisées
[Termes IGN] scène urbaine
[Termes IGN] superposition de donnéesRésumé : (auteur) Both UAV photogrammetry and lidar have become common in deriv- ing three-dimensional models of urban scenes, and each has its own advantages and disadvantages. However, the fusion of these multisource data is still challenging, in which registration is one of the most important stages. In this paper, we propose a method of coarse point cloud registration which consists of two steps. The first step is to extract urban building facades in both an oblique photogrammetric point cloud and a lidar point cloud. The second step is to align the two point clouds using the extracted building facades. Object Vicinity Distribution Feature (Dijkman and Van Den Heuvel 2002) is introduced to describe the distribution of building facades and register the two heterologous point clouds. This method provides a good initial state for later refined registration process and is translation, rotation, and scale invariant. Experiment results show that the accuracy of this proposed automatic registration method is equiva- lent to the accuracy of manual registration with control points. Numéro de notice : A2022-882 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00069R3 Date de publication en ligne : 01/12/2022 En ligne : https://doi.org/10.14358/PERS.22-00069R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102206
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 12 (December 2022) . - pp 767 - 782[article]Multi‑constellation GNSS interferometric reflectometry for the correction of long-term snow height retrieval on sloping topography / Wei Zhou in GPS solutions, vol 26 n° 4 (October 2022)
[article]
Titre : Multi‑constellation GNSS interferometric reflectometry for the correction of long-term snow height retrieval on sloping topography Type de document : Article/Communication Auteurs : Wei Zhou, Auteur ; Liangke Huang, Auteur ; Bing Ji, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 140 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] hauteur (coordonnée)
[Termes IGN] manteau neigeux
[Termes IGN] pente
[Termes IGN] Ransac (algorithme)
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflectométrie par GNSS
[Termes IGN] signal GNSS
[Termes IGN] système de référence altimétrique
[Termes IGN] topographie locale
[Termes IGN] transformation en ondelettes
[Termes IGN] valeur aberrante
[Vedettes matières IGN] AltimétrieRésumé : (auteur) Snow is a key parameter for global climate and hydrological systems. Global Navigation Satellite System interferometric reflectometry (GNSS-IR) has been applied to accurately monitor snow height (SH) with low cost and high temporal–spatial resolution. We proposed an improved GNSS-IR method using detrended signal-to-noise ratio (δSNR) arcs corresponding to multipath reflection tracks with different azimuths. After using wavelet decomposition and random sample consensus, noise with various frequencies for SNR arcs and outliers of reflector height (RH) estimations have been sequentially mitigated to enhance the availability of the proposed method. Thus, a height datum based on the ground RHs retrieved from multi-GNSS SNR data is established to compensate for the influence of topography variation with different azimuths in SH retrieval. The approximately 3-month δSNR datasets collected from three stations deployed on sloping topography were used to retrieve SH and compared with the existing method and in situ measurements. The results show that the root mean square errors of the retrievals derived from the proposed method for the three sites are between 4 and 8 cm, and the corresponding correlation surpasses 0.95 when compared to the reference SH datasets. Additionally, we compare the performance of a retrieval with the existing GNSS-IR Web App, and it shows an improvement in RMSE of about 7 cm. Furthermore, because topography variation has been considered, the average correction of SH retrievals is between 2 and 4 cm. The solution with the proposed method helps develop the applications of the GNSS-IR technique on complex topography. Numéro de notice : A2022-712 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01333-0 Date de publication en ligne : 15/09/2022 En ligne : https://doi.org/10.1007/s10291-022-01333-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101590
in GPS solutions > vol 26 n° 4 (October 2022) . - n° 140[article]An improved multi-task pointwise network for segmentation of building roofs in airborne laser scanning point clouds / Chaoquan Zhang in Photogrammetric record, vol 37 n° 179 (September 2022)
[article]
Titre : An improved multi-task pointwise network for segmentation of building roofs in airborne laser scanning point clouds Type de document : Article/Communication Auteurs : Chaoquan Zhang, Auteur ; Hongchao Fan, Auteur Année de publication : 2022 Article en page(s) : pp 260 - 284 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage profond
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] fusion de données
[Termes IGN] Norvège
[Termes IGN] Ransac (algorithme)
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] toitRésumé : (auteur) Roof plane segmentation is an essential step in the process of 3D building reconstruction from airborne laser scanning (ALS) point clouds. The existing approaches either rely on human intervention to select the appropriate input parameters for different data-sets or they are not automatic and efficient. To tackle these issues, an improved multi-task pointwise network is proposed to simultaneously segment instances (that is, individual roof planes) and semantics (that is, groups of roof planes with similar geometric shapes) in point clouds. PointNet++ is used as a backbone network to extract robust features in the first step. The features from semantics branch are then added to the instance branch to facilitate the learning of instance embeddings. After that, a feature fusion module is added to the semantics branch to acquire more discriminative features from the backbone network. To increase the accuracy of semantic predictions, fused semantic features of the points belonging to the same instance are aggregated together. Finally, a mean-shift clustering algorithm is employed on instance embeddings to produce the instance predictions. Furthermore, a new roof data-set (called RoofNTNU) is established by taking ALS point clouds as training data for automatic and more general segmentation. Experiments on the new roof data-set show that the method achieves promising segmentation results: the mean precision (mPrec) of 96.2% for the instance segmentation task and mean accuracy (mAcc) of 94.4% for the semantic segmentation task. Numéro de notice : A2022-936 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12420 Date de publication en ligne : 13/07/2022 En ligne : https://doi.org/10.1111/phor.12420 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102682
in Photogrammetric record > vol 37 n° 179 (September 2022) . - pp 260 - 284[article]Investigating the role of image retrieval for visual localization / Martin Humenberger in International journal of computer vision, vol 130 n° 7 (July 2022)
[article]
Titre : Investigating the role of image retrieval for visual localization Type de document : Article/Communication Auteurs : Martin Humenberger, Auteur ; Yohann Cabon, Auteur ; Noé Pion, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : 1811 - 1836 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse visuelle
[Termes IGN] base de données d'images
[Termes IGN] estimation de pose
[Termes IGN] flou
[Termes IGN] localisation basée image
[Termes IGN] localisation basée vision
[Termes IGN] point de repère
[Termes IGN] précision de localisation
[Termes IGN] Ransac (algorithme)
[Termes IGN] réalité de terrain
[Termes IGN] structure-from-motion
[Termes IGN] vision par ordinateurRésumé : (auteur) Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of “ground truth” for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still significant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization. Numéro de notice : A2022-538 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01615-7 Date de publication en ligne : 25/05/2022 En ligne : https://doi.org/10.1007/s11263-022-01615-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101070
in International journal of computer vision > vol 130 n° 7 (July 2022) . - 1811 - 1836[article]Lidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks / Aurélien Brun in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
[article]
Titre : Lidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks Type de document : Article/Communication Auteurs : Aurélien Brun, Auteur ; Davide Antonio Cucci, Auteur ; Jan Skaloud, Auteur Année de publication : 2022 Article en page(s) : pp 185 - 200 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de points
[Termes IGN] centrale inertielle
[Termes IGN] données lidar
[Termes IGN] filtre de Kalman
[Termes IGN] géoréférencement
[Termes IGN] précision du positionnement
[Termes IGN] Ransac (algorithme)
[Termes IGN] semis de points
[Termes IGN] signal GNSS
[Termes IGN] superpositionRésumé : (auteur) With the objective of improving the registration of lidar point clouds produced by kinematic scanning systems, we propose a novel trajectory adjustment procedure that leverages on the automated extraction of selected reliable 3D point–to–point correspondences between overlapping point clouds and their joint integration (adjustment) together with raw inertial and GNSS observations. This is performed in a tightly coupled fashion using a dynamic network approach that results in an optimally compensated trajectory through modeling of errors at the sensor, rather than the trajectory, level. The 3D correspondences are formulated as static conditions within the dynamic network and the registered point cloud is generated with significantly higher accuracy based on the corrected trajectory and possibly other parameters determined within the adjustment. We first describe the method for selecting correspondences and how they are inserted into the dynamic network via new observation model while providing an open-source implementation of the solver employed in this work. We then describe the experiments conducted to evaluate the performance of the proposed framework in practical airborne laser scanning scenarios with low-cost MEMS inertial sensors. In the conducted experiments, the method proposed to establish 3D correspondences is effective in determining point–to–point matches across a wide range of geometries such as trees, buildings and cars. Our results demonstrate that the method improves the point cloud registration accuracy (5 in nominal and 10 in emulated GNSS outage conditions within the studied cases), which is otherwise strongly affected by errors in the determined platform attitude or position, and possibly determine unknown boresight angles. The proposed methods remain effective even if only a fraction (0.1%) of the total number of established 3D correspondences are considered in the adjustment. Numéro de notice : A2022-413 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.04.027 Date de publication en ligne : 19/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.027 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100764
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 185 - 200[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible PermalinkPermalinkPermalinkPermalinkPermalinkApplication of a hand-held LiDAR scanner for the urban cadastral detail survey in digitized cadastral area of Taiwan urban city / Shih-Hong Chio in Remote sensing, vol 13 n° 24 (December-2 2021)PermalinkUrban geospatial information acquisition mobile mapping system based on close-range photogrammetry and IGS site calibration / Ming Guo in Geo-spatial Information Science, vol 24 n° 4 (October 2021)PermalinkGIScience integrated with computer vision for the examination of old engravings and drawings / Motti Zohar in International journal of geographical information science IJGIS, vol 35 n° 9 (September 2021)PermalinkVectorized indoor surface reconstruction from 3D point cloud with multistep 2D optimization / Jiali Han in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)Permalink3D reconstruction of bridges from airborne laser scanning data and cadastral footprints / Steffen Goebbels in Journal of Geovisualization and Spatial Analysis, vol 5 n° 1 (June 2021)PermalinkResearch on feature extraction method of indoor visual positioning image based on area division of foreground and background / Ping Zheng in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)PermalinkRobust detection of non-overlapping ellipses from points with applications to circular target extraction in images and cylinder detection in point clouds / Reza Maalek in ISPRS Journal of photogrammetry and remote sensing, vol 176 (June 2021)PermalinkSpherically optimized RANSAC aided by an IMU for Fisheye Image Matching / Anbang Liang in Remote sensing, vol 13 n°10 (May-2 2021)PermalinkVisual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors / Longyu Zhang in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)PermalinkBuilding extraction from Lidar data using statistical methods / Haval Abdul-Jabbar Sadeq in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)PermalinkCartographie dense et compacte par vision RGB-D pour la navigation d’un robot mobile / Bruce Canovas (2021)PermalinkPermalinkRelation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds / Yuan Li in Remote sensing, vol 13 n° 1 (January-1 2021)PermalinkPlanar polygons detection in lidar scans based on sensor topology enhanced Ransac / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)PermalinkDelineating minor landslide displacements using GPS and terrestrial laser scanning-derived terrain surfaces and trees: a case study of the Slumgullion landslide, Lake City, Colorado / Jin Wang in Survey review, vol 52 n° 372 (May 2020)PermalinkAn improved RANSAC algorithm for extracting roof planes from airborne lidar data / Sibel Canaz Sevgen in Photogrammetric record, vol 35 n° 169 (March 2020)PermalinkReducing shadow effects on the co-registration of aerial image pairs / Matthew Plummer in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)PermalinkAutomatic scale estimation of structure from motion based 3D models using laser scalers in underwater scenarios / Klemen Istenič in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)PermalinkImage processing applications in object detection and graph matching: from Matlab development to GPU framework / Beibei Cui (2020)PermalinkPiecewise-planar approximation of large 3D data as graph-structured optimization / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol IV-2/W5 (May 2019)PermalinkDetecting and characterizing downed dead wood using terrestrial laser scanning / Tuomas Yrttimaa in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)PermalinkFusion of thermal imagery with point clouds for building façade thermal attribute mapping / Dong Lin in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)PermalinkPairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets / Yusheng Xu in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)PermalinkMeasuring stem diameters with TLS in boreal forests by complementary fitting procedure / Timo P Pitkänen in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)PermalinkStructure from motion for ordered and unordered image sets based on random k-d forests and global pose estimation / Xin Wang in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)PermalinkExtraction of building roof planes with stratified random sample consensus / André C. Carrilho in Photogrammetric record, vol 33 n° 163 (September 2018)PermalinkThree-point-based solution for automated motion parameter estimation of a multi-camera indoor mapping system with planar motion constraint / Fangning He in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)PermalinkMachine learning and pose estimation for autonomous robot grasping with collaborative robots / Victor Talbot (2018)PermalinkAlgebraic method to speed up robust algorithms: example of laser-scanned point clouds / B. Palancz in Survey review, vol 49 n° 357 (December 2017)PermalinkA Geometric and Radiometric Simultaneous Correction Model (GRSCM) framework for high-accuracy remotely sensed image preprocessing / Chang Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 9 (September 2017)PermalinkMise en place d’un processus de dessin automatisé de plans d’intérieurs à partir de nuages de points acquis par LIDAR / Léa Talec (2017)PermalinkAutomatic registration of MLS point clouds and SfM meshes of urban area / Reiji Yoshimura in Geo-spatial Information Science, vol 19 n° 3 (October 2016)PermalinkThe reliability of RANSAC method when estimating the parameters of geometric object / Tilen Urbančič in Geodetski vestnik, vol 60 n° 1 (March - May 2016)PermalinkPermalinkConception d’une méthode de consolidation de grands réseaux lasergrammétriques / Emmanuel Clédat (2015)PermalinkAssociation-matrix-based sample consensus approach for automated registration of terrestrial laser scans using linear features / Kaleel Al-Durgham in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 11 (November 2014)PermalinkA robust image matching method based on optimized BaySAC / Zhizhong Kang in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 11 (November 2014)PermalinkAutomatic registration of coastal remotely sensed imagery by affine invariant feature matching with shoreline constraint / Liang Cheng in Marine geodesy, vol 37 n° 1 (March - May 2014)PermalinkA new method for automatic large scale map updating using mobile mapping imagery / Jianliang Ou in Photogrammetric record, vol 28 n° 143 (September - November 2013)PermalinkRegistration of aerial imagery and lidar data in desert areas using the centroids of bushes as control information / Na Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 8 (August 2013)Permalink