Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > analyse des mélanges spectraux > analyse linéaire des mélanges spectraux
analyse linéaire des mélanges spectraux |
Documents disponibles dans cette catégorie (32)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Deep generative model for spatial–spectral unmixing with multiple endmember priors / Shuaikai Shi in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
[article]
Titre : Deep generative model for spatial–spectral unmixing with multiple endmember priors Type de document : Article/Communication Auteurs : Shuaikai Shi, Auteur ; Lijun Zhang, Auteur ; Yoann Altmann, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5527214 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal de graphesRésumé : (auteur) Spectral unmixing is an effective tool to mine information at the subpixel level from complex hyperspectral images. To consider the spatially correlated materials distributions in the scene, many algorithms unmix the data in a spatial–spectral fashion; however, existing models are usually unable to model spectral variability simultaneously. In this article, we present a variational autoencoder-based deep generative model for spatial–spectral unmixing (DGMSSU) with endmember variability, by linking the generated endmembers to the probability distributions of endmember bundles extracted from the hyperspectral imagery via discriminators. Besides the convolutional autoencoder-like architecture that can only model the spatial information within the regular patch inputs, DGMSSU is able to alternatively choose graph convolutional networks or self-attention mechanism modules to handle the irregular but more flexible data—superpixel. Experimental results on a simulated dataset, as well as two well-known real hyperspectral images, show the superiority of our proposed approach in comparison with other state-of-the-art spatial–spectral unmixing methods. Compared to the conventional unmixing methods that consider the endmember variability, our proposed model generates more accurate endmembers on each subimage by the adversarial training process. The codes of this work will be available at https://github.com/shuaikaishi/DGMSSU for the sake of reproducibility. Numéro de notice : A2022-380 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3168712 Date de publication en ligne : 18/04/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3168712 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100645
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 4 (April 2022) . - n° 5527214[article]Spectral variability in hyperspectral unmixing : Multiscale, tensor, and neural network-based approaches / Ricardo Augusto Borsoi (2021)
Titre : Spectral variability in hyperspectral unmixing : Multiscale, tensor, and neural network-based approaches Type de document : Thèse/HDR Auteurs : Ricardo Augusto Borsoi, Auteur ; Cédric Richard, Directeur de thèse ; José Carlos Moreira Bermudez, Directeur de thèse Editeur : Nice : Université Côte d'Azur Année de publication : 2021 Importance : 187 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée en vue de l'obtention du grade de docteur science pour l’ingénieur de l’Université Côte d'AzurLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] image multitemporelle
[Termes IGN] réseau antagoniste génératif
[Termes IGN] signature spectrale
[Termes IGN] tenseurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The spectral signatures of the materials contained in hyperspectral images, also called endmembers (EMs), can be significantly affected by variations in atmospheric, illumination or environmental conditions typically occurring within an image. Traditional spectral unmixing (SU) algorithms neglect the spectral variability of the endmembers, what propagates significant mismodeling errors throughout the whole unmixing process and compromises the quality of the estimated abundances. Therefore, significant effort have been recently dedicated to mitigate the effects of spectral variability in SU. However, many challenges still remain in how to best explore a priori information about the problem in order to improve the quality, the robustness and the efficiency of SU algorithms that account for spectral variability. In this thesis, new strategies are developed to address spectral variability in SU. First, an (over)-segmentation-based multiscale regularization strategy is proposed to explore spatial information about the abundance maps more effectively. New algorithms are then proposed for both semi-supervised and blind SU, leading to improved abundance reconstruction performance at a small computational complexity. Afterwards, three new models are proposed to represent spectral variability of the EMs in SU, using parametric, tensor, and neural network-based representations for EM spectra at each image pixel. The parametric model introduces pixel-dependent scaling factors over a reference EM matrix to model arbitrary spectral variability, while the tensor-based representation allows one to exploit the high-dimensional nature of the data by means of its underlying low-rank structure. Generative neural networks (such as variational autoencoders or generative adversarial networks) finally allow one to model the low-dimensional manifold of the spectral signatures of the materials more effectively. The proposed models are used to devise three new blind SU algorithms, and to perform data augmentation in library-based SU. Finally, we provide a brief overview of work which extends the proposed strategies to new problems in SU and in hyperspectral image analysis. This includes the use of the multiscale abundance regularization in nonlinear SU, modeling spectral variability and accounting for sudden changes when performing SU and change detection of multitemporal hyperspectral images, and also accounting for spectral variability and changes in the multimodal (i.e., hyperspectral and multispectral) image fusion problem. Note de contenu : 1- Introduction
2- Origin of linear mixing model spectral variability in hyperspectral images
3- A ultiscale spatial regularization for fast unmixing with spectral librairies
4- A data dependent multiscale model for spectral unmixing with specral variability
5- Generalized linear mixing model accounting for endmember variability
6- Low-rank tensor modeling for spectral unmixing accounting for spectral variability
7- Deep generative endmembers modeling: An application to unsupervised spectral unmixing
8- Deep generative models for library augmentation in multiple endmember spectral mixture analysis
9- And now for something different...
10- ConclusionsNuméro de notice : 28487 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : thèse de Doctorat : Sciences pour l'Ingénieur : Côte d'Azur : 2021 Organisme de stage : Laboratoire J.-L. Lagrange, Observatoire de la Côte d’Azur DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-03253631/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99188 Monitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing / Jonathan B. Thayn in Marine geodesy, Vol 43 n° 5 (September 2020)
[article]
Titre : Monitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing Type de document : Article/Communication Auteurs : Jonathan B. Thayn, Auteur Année de publication : 2020 Article en page(s) : pp 493 - 508 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-8
[Termes IGN] mangrove
[Termes IGN] Mexique
[Termes IGN] réflectance spectraleRésumé : (auteur) Small stands of mangrove trees are difficult to detect and monitor using satellite remote sensing because the width of the narrow strips of vegetation are typically much smaller than the spatial resolution of the imagery. Every mangrove pixel also contains water and bare soil reflectance. Linear spectral unmixing, which estimates the fractional presence of specific land cover types per pixel, was performed on Landsat 8 imagery to detect mangroves on the eastern shoreline of the Bay of La Paz on the Baja California Peninsula of Mexico. Low-altitude aerial imagery collected from a DJI Mavic Pro drone was used as ground-reference data in the accuracy assessment. Continuous fractional presence of mangroves was detected with 80% accuracy and 85% of mangrove area was found. Future work will use linear spectral unmixing to systematically monitor mangrove extent and health in the region relative to expected growth in tourism development. Numéro de notice : A2020-483 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01490419.2020.1751753 Date de publication en ligne : 30/04/2020 En ligne : https://doi.org/10.1080/01490419.2020.1751753 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95636
in Marine geodesy > Vol 43 n° 5 (September 2020) . - pp 493 - 508[article]10th Colour and Visual Computing Symposium 2020 (CVCS 2020), Gjøvik, Norway, and Virtual, September 16-17, 2020 / Jean-Baptiste Thomas (2020)
Titre : 10th Colour and Visual Computing Symposium 2020 (CVCS 2020), Gjøvik, Norway, and Virtual, September 16-17, 2020 : Proceedings Type de document : Actes de congrès Auteurs : Jean-Baptiste Thomas, Éditeur scientifique Editeur : Gjøvik [Norvège] : Norwegian University of Science and Technology Année de publication : 2020 Conférence : CVCS 2020, Colour and Visual Computing Symposium 16/09/2020 17/09/2020 Gjøvik et en ligne Norvège Open Access Proceedings Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] analyse visuelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couleur (variable spectrale)
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] imagerie médicale
[Termes IGN] luminance lumineuse
[Termes IGN] peinture
[Termes IGN] photographieNuméro de notice : 25892 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Actes En ligne : http://ceur-ws.org/Vol-2688/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96006 Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis / Divyesh Varade in Geocarto international, vol 34 n° 14 ([30/10/2019])
[article]
Titre : Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis Type de document : Article/Communication Auteurs : Divyesh Varade, Auteur ; Anudeep Sure, Auteur ; Onkar Dikshit, Auteur Année de publication : 2019 Article en page(s) : pp 1552 - 1567 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] classification dirigée
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] Inde
[Termes IGN] occupation du sol
[Termes IGN] réflectance spectrale
[Termes IGN] utilisation du solRésumé : (auteur) This study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies. Numéro de notice : A2019-527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1497096 Date de publication en ligne : 07/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1497096 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94101
in Geocarto international > vol 34 n° 14 [30/10/2019] . - pp 1552 - 1567[article]Unmixing polarimetric radar images based on land cover type identified by higher resolution optical data before target decomposition: application to forest and bare soil / Sébastien Giordano in IEEE Transactions on geoscience and remote sensing, vol 56 n° 10 (October 2018)PermalinkPredicting temperate forest stand types using only structural profiles from discrete return airborne lidar / Melissa Fedrigo in ISPRS Journal of photogrammetry and remote sensing, vol 136 (February 2018)PermalinkAdaptive linear spectral mixture analysis / Chein-I Chang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)PermalinkRobust sparse hyperspectral unmixing with ℓ2,1 norm / Yong Ma in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)PermalinkComparative analysis on utilisation of linear spectral unmixing and band ratio methods for processing ASTER data to delineate bauxite over a part of Chotonagpur plateau, Jharkhand, India / Arindam Guha in Geocarto international, vol 31 n° 3 - 4 (March - April 2016)PermalinkPermalinkTwo dimensional linear discriminant analyses for hyperspectral data / Maryam Imani in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 10 (October 2015)PermalinkMinimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing / Jun Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)PermalinkComplementarity of discriminative classifiers and spectral unmixing techniques for the interpretation of hyperspectral images / Jun Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)PermalinkLinear spectral mixture analysis via multiple-kernel learning for hyperspectral image classification / Keng-Hao Liu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 4 (April 2015)Permalink