Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > analyse des mélanges spectraux > analyse de mélange spectral d’extrémités multiples
analyse de mélange spectral d’extrémités multiplesSynonyme(s)MESMA |
Documents disponibles dans cette catégorie (19)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Mapping impervious surfaces with a hierarchical spectral mixture analysis incorporating endmember spatial distribution / Zhenfeng Shao in Geo-spatial Information Science, vol 25 n° 4 (December 2022)
[article]
Titre : Mapping impervious surfaces with a hierarchical spectral mixture analysis incorporating endmember spatial distribution Type de document : Article/Communication Auteurs : Zhenfeng Shao, Auteur ; Yuan Zhang, Auteur ; Cheng Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 550 - 567 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] approche hiérarchique
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] image Gaofen
[Termes IGN] image Landsat-OLI
[Termes IGN] scène urbaine
[Termes IGN] surface imperméableRésumé : (auteur) Impervious surface mapping is essential for urban environmental studies. Spectral Mixture Analysis (SMA) and its extensions are widely employed in impervious surface estimation from medium-resolution images. For SMA, inappropriate endmember combinations and inadequate endmember classes have been recognized as the primary reasons for estimation errors. Meanwhile, the spectral-only SMA, without considering urban spatial distribution, fails to consider spectral variability in an adequate manner. The lack of endmember class diversity and their spatial variations lead to over/underestimation. To mitigate these issues, this study integrates a hierarchical strategy and spatially varied endmember spectra to map impervious surface abundance, taking Wuhan and Wuzhou as two study areas. Specifically, the piecewise convex multiple-model endmember detection algorithm is applied to automatically hierarchize images into three regions, and distinct endmember combinations are independently developed in each region. Then, spatially varied endmember spectra are synthesized through neighboring spectra using the distance-based weight. Comparative analysis indicates that the proposed method achieves better performance than Hierarchical SMA and Fixed Four-endmembers SMA in terms of MAE, SE, and RMSE. Further analysis suggests that the hierarchical strategy can expand endmember class types and considerably improve the performance for the study areas in general, specifically in less developed areas. Moreover, we find that spatially varied endmember spectra facilitate the reduction of heterogeneous surface material variations and achieve the improved performance in developed areas. Numéro de notice : A2022-890 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2022.2028535 Date de publication en ligne : 02/03/2022 En ligne : https://doi.org/10.1080/10095020.2022.2028535 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102237
in Geo-spatial Information Science > vol 25 n° 4 (December 2022) . - pp 550 - 567[article]Deep generative model for spatial–spectral unmixing with multiple endmember priors / Shuaikai Shi in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
[article]
Titre : Deep generative model for spatial–spectral unmixing with multiple endmember priors Type de document : Article/Communication Auteurs : Shuaikai Shi, Auteur ; Lijun Zhang, Auteur ; Yoann Altmann, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5527214 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal de graphesRésumé : (auteur) Spectral unmixing is an effective tool to mine information at the subpixel level from complex hyperspectral images. To consider the spatially correlated materials distributions in the scene, many algorithms unmix the data in a spatial–spectral fashion; however, existing models are usually unable to model spectral variability simultaneously. In this article, we present a variational autoencoder-based deep generative model for spatial–spectral unmixing (DGMSSU) with endmember variability, by linking the generated endmembers to the probability distributions of endmember bundles extracted from the hyperspectral imagery via discriminators. Besides the convolutional autoencoder-like architecture that can only model the spatial information within the regular patch inputs, DGMSSU is able to alternatively choose graph convolutional networks or self-attention mechanism modules to handle the irregular but more flexible data—superpixel. Experimental results on a simulated dataset, as well as two well-known real hyperspectral images, show the superiority of our proposed approach in comparison with other state-of-the-art spatial–spectral unmixing methods. Compared to the conventional unmixing methods that consider the endmember variability, our proposed model generates more accurate endmembers on each subimage by the adversarial training process. The codes of this work will be available at https://github.com/shuaikaishi/DGMSSU for the sake of reproducibility. Numéro de notice : A2022-380 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3168712 Date de publication en ligne : 18/04/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3168712 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100645
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 4 (April 2022) . - n° 5527214[article]Spectral variability in hyperspectral unmixing : Multiscale, tensor, and neural network-based approaches / Ricardo Augusto Borsoi (2021)
Titre : Spectral variability in hyperspectral unmixing : Multiscale, tensor, and neural network-based approaches Type de document : Thèse/HDR Auteurs : Ricardo Augusto Borsoi, Auteur ; Cédric Richard, Directeur de thèse ; José Carlos Moreira Bermudez, Directeur de thèse Editeur : Nice : Université Côte d'Azur Année de publication : 2021 Importance : 187 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée en vue de l'obtention du grade de docteur science pour l’ingénieur de l’Université Côte d'AzurLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] image multitemporelle
[Termes IGN] réseau antagoniste génératif
[Termes IGN] signature spectrale
[Termes IGN] tenseurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The spectral signatures of the materials contained in hyperspectral images, also called endmembers (EMs), can be significantly affected by variations in atmospheric, illumination or environmental conditions typically occurring within an image. Traditional spectral unmixing (SU) algorithms neglect the spectral variability of the endmembers, what propagates significant mismodeling errors throughout the whole unmixing process and compromises the quality of the estimated abundances. Therefore, significant effort have been recently dedicated to mitigate the effects of spectral variability in SU. However, many challenges still remain in how to best explore a priori information about the problem in order to improve the quality, the robustness and the efficiency of SU algorithms that account for spectral variability. In this thesis, new strategies are developed to address spectral variability in SU. First, an (over)-segmentation-based multiscale regularization strategy is proposed to explore spatial information about the abundance maps more effectively. New algorithms are then proposed for both semi-supervised and blind SU, leading to improved abundance reconstruction performance at a small computational complexity. Afterwards, three new models are proposed to represent spectral variability of the EMs in SU, using parametric, tensor, and neural network-based representations for EM spectra at each image pixel. The parametric model introduces pixel-dependent scaling factors over a reference EM matrix to model arbitrary spectral variability, while the tensor-based representation allows one to exploit the high-dimensional nature of the data by means of its underlying low-rank structure. Generative neural networks (such as variational autoencoders or generative adversarial networks) finally allow one to model the low-dimensional manifold of the spectral signatures of the materials more effectively. The proposed models are used to devise three new blind SU algorithms, and to perform data augmentation in library-based SU. Finally, we provide a brief overview of work which extends the proposed strategies to new problems in SU and in hyperspectral image analysis. This includes the use of the multiscale abundance regularization in nonlinear SU, modeling spectral variability and accounting for sudden changes when performing SU and change detection of multitemporal hyperspectral images, and also accounting for spectral variability and changes in the multimodal (i.e., hyperspectral and multispectral) image fusion problem. Note de contenu : 1- Introduction
2- Origin of linear mixing model spectral variability in hyperspectral images
3- A ultiscale spatial regularization for fast unmixing with spectral librairies
4- A data dependent multiscale model for spectral unmixing with specral variability
5- Generalized linear mixing model accounting for endmember variability
6- Low-rank tensor modeling for spectral unmixing accounting for spectral variability
7- Deep generative endmembers modeling: An application to unsupervised spectral unmixing
8- Deep generative models for library augmentation in multiple endmember spectral mixture analysis
9- And now for something different...
10- ConclusionsNuméro de notice : 28487 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : thèse de Doctorat : Sciences pour l'Ingénieur : Côte d'Azur : 2021 Organisme de stage : Laboratoire J.-L. Lagrange, Observatoire de la Côte d’Azur DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-03253631/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99188 Assessing environmental impacts of urban growth using remote sensing / John C. Trinder in Geo-spatial Information Science, vol 23 n° 1 (March 2020)
[article]
Titre : Assessing environmental impacts of urban growth using remote sensing Type de document : Article/Communication Auteurs : John C. Trinder, Auteur ; Qingxiang Liu, Auteur Année de publication : 2020 Article en page(s) : pp 20 - 39 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] développement durable
[Termes IGN] image Landsat
[Termes IGN] impact sur l'environnement
[Termes IGN] réseau neuronal artificiel
[Termes IGN] service écosystémique
[Termes IGN] Sydney (Nouvelle-Galles du Sud)
[Termes IGN] Wuhan (Chine)Résumé : (auteur) This paper provides a study of the changes in land use in urban environments in two cities, Wuhan, China and western Sydney in Australia. Since mixed pixels are a characteristic of medium resolution images such as Landsat, when used for the classification of urban areas, due to changes in urban ground cover within a pixel, Multiple Endmember Spectral Mixture Analysis (MESMA) together with Super-Resolution Mapping (SRM) are employed to derive class fractions to generate classification maps at a higher spatial resolution using an Artificial Neural Network (ANN) predicted Wavelet method. Landsat images over the two cities for a 30-year period, are classified in terms of vegetation, buildings, soil and water. The classifications are then processed using Indifrag software to assess the levels of fragmentation caused by changes in the areas of buildings, vegetation, water and soil over the 30 years. The extents of fragmentation of vegetation, buildings, water and soil for the two cities are compared, while the percentages of vegetation are compared with recommended percentages of green space for urban areas for the benefit of health and well-being of inhabitants. Changes in Ecosystem Service Values (ESVs) resulting from the urbanization have been assessed for Wuhan and Sydney. The UN Sustainable Development Goals (SDG) for urban areas are being assessed by researchers to better understand how to achieve the sustainability of cities. Numéro de notice : A2020-162 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2019.1710438 Date de publication en ligne : 21/01/2020 En ligne : https://doi.org/10.1080/10095020.2019.1710438 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94822
in Geo-spatial Information Science > vol 23 n° 1 (March 2020) . - pp 20 - 39[article]Burn severity analysis in Mediterranean forests using maximum entropy model trained with EO-1 Hyperion and LiDAR data / Alfonso Fernández-Manso in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
[article]
Titre : Burn severity analysis in Mediterranean forests using maximum entropy model trained with EO-1 Hyperion and LiDAR data Type de document : Article/Communication Auteurs : Alfonso Fernández-Manso, Auteur ; Carmen Quintano, Auteur ; Dar A. Roberts, Auteur Année de publication : 2019 Article en page(s) : pp 102 - 118 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] entropie
[Termes IGN] forêt méditerranéenne
[Termes IGN] image EO1-Hyperion
[Termes IGN] incendie de forêtRésumé : (Auteur) All ecosystems and in particular ecosystems in Mediterranean climates are affected by fires. Knowledge of the drivers that most influence burn severity patterns as well an accurate map of post-fire effects are key tools for forest managers in order to plan an adequate post-fire response. Remote sensing data are becoming an indispensable instrument to reach both objectives. This work explores the relative influence of pre-fire vegetation structure and topography on burn severity compared to the impact of post-fire damage level, and evaluates the utility of the Maximum Entropy (MaxEnt) classifier trained with post-fire EO-1 Hyperion data and pre-fire LiDAR to model three levels of burn severity at high accuracy. We analyzed a large fire in central-eastern Spain, which occurred on 16–19 June 2016 in a maquis shrubland and Pinus halepensis forested area. Post-fire hyperspectral Hyperion data were unmixed using Multiple Endmember Spectral Mixture Analysis (MESMA) and five fraction images were generated: char, green vegetation (GV), non-photosynthetic vegetation, soil (NPVS) and shade. Metrics associated with vegetation structure were calculated from pre-fire LiDAR. Post-fire MESMA char fraction image, pre-fire structural metrics and topographic variables acted as inputs to MaxEnt, which built a model and generated as output a suitability surface for each burn severity level. The percentage of contribution of the different biophysical variables to the MaxEnt model depended on the burn severity level (LiDAR-derived metrics had a greater contribution at the low burn severity level), but MaxEnt identified the char fraction image as the highest contributor to the model for all three burn severity levels. The present study demonstrates the validity of MaxEnt as one-class classifier to model burn severity accurately in Mediterranean countries, when trained with post-fire hyperspectral Hyperion data and pre-fire LiDAR. Numéro de notice : A2019-313 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2019.07.003 Date de publication en ligne : 14/07/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.07.003 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93339
in ISPRS Journal of photogrammetry and remote sensing > vol 155 (September 2019) . - pp 102 - 118[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019091 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019093 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Hyperspectral analysis of soil polluted with four types of hydrocarbons / Laura A. Reséndez-Hernández in Geocarto international, vol 34 n° 9 ([15/06/2019])PermalinkInfluence of tree species complexity on discrimination performance of vegetation indices / Azadeh Ghiyamat in European journal of remote sensing, vol 49 n° 1 (2016)PermalinkLeveraging in-scene spectra for vegetation species discrimination with MESMA-MDA / Brian D. Bue in ISPRS Journal of photogrammetry and remote sensing, vol 108 (October 2015)PermalinkA novel negative abundance‐oriented hyperspectral unmixing algorithm / Rubén Marrero in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)PermalinkEstimating fractional land cover in semi-arid central Kalahari: the impact of mapping method (spectral unmixing vs. object-based image analysis) and vegetation morphology / Niti B. Mishra in Geocarto international, vol 29 n° 7 - 8 (November - December 2014)PermalinkThe use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques / Chengbin Deng in ISPRS Journal of photogrammetry and remote sensing, vol 86 (December 2013)PermalinkMapping and assessing of urban impervious areas using multiple endmember spectral mixture analysis: a case study in the city of Tampa, Florida / Fenqing Weng in Geocarto international, vol 28 n° 7-8 (November - December 2013)PermalinkPiecewise convex multiple-model endmember detection and spectral unmixing / Alina Zare in IEEE Transactions on geoscience and remote sensing, vol 51 n° 5 Tome 1 (May 2013)PermalinkMultiple endmember unmixing of CHRIS/Proba imagery for mapping impervious surfaces in urban and suburban environments / Luca Demarchi in IEEE Transactions on geoscience and remote sensing, vol 50 n° 9 (October 2012)PermalinkMapping impervious surfaces from superresolution enhanced CHRIS/Proba imagery using multiple endmember unmixing / Luca Demarchi in ISPRS Journal of photogrammetry and remote sensing, vol 72 (August 2012)Permalink