Descripteur
Termes IGN > géomatique > données localisées > données spatiotemporelles
données spatiotemporellesVoir aussi |
Documents disponibles dans cette catégorie (438)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Detecting spatiotemporal propagation patterns of traffic congestion from fine-grained vehicle trajectory data / Haoyi Xiong in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
[article]
Titre : Detecting spatiotemporal propagation patterns of traffic congestion from fine-grained vehicle trajectory data Type de document : Article/Communication Auteurs : Haoyi Xiong, Auteur ; Xun Zhou, Auteur ; David A. Bennett, Auteur Année de publication : 2023 Article en page(s) : pp 1157-1179 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] détection d'anomalie
[Termes IGN] données spatiotemporelles
[Termes IGN] événement
[Termes IGN] flux
[Termes IGN] gestion de trafic
[Termes IGN] réseau routier
[Termes IGN] trafic routierRésumé : (auteur) Traffic congestion on a road segment typically begins as a small-scale spatiotemporal event that can then propagate throughout a road network and produce large-scale disruptions to a transportation system. In current techniques for the analysis of network flow, data is often aggregated to relatively large (e.g. 5 min) discrete time steps that obscure the small-scale spatiotemporal interactions that drive larger-scale dynamics. We propose a new method that handles fine-grained data to better capture those dynamics. Propagation patterns of traffic congestion are represented as spatiotemporally connected events. Each event is captured as a time series at the temporal resolution of the available trajectory data and at the spatial resolution of the network edge. The spatiotemporal propagation patterns of traffic congestion are captured using Dynamic Time Warping and represented as a set of directed acyclic graphs of spatiotemporal events. Results from this method are compared to an existing method using fine-grained data derived from an agent-based model of traffic simulation. Our method outperforms the existing method. Our method also successfully detects congestion propagation patterns that were reported by media news using sparse real-world data derived from taxis. Numéro de notice : A2023-225 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2023.2178653 Date de publication en ligne : 22/02/2023 En ligne : https://doi.org/10.1080/13658816.2023.2178653 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103177
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 1157-1179[article]Assessing the cognition of movement trajectory visualizations: interpreting speed and direction / Crystal J. Bae in Cartography and Geographic Information Science, Vol 50 n° 2 (March 2023)
[article]
Titre : Assessing the cognition of movement trajectory visualizations: interpreting speed and direction Type de document : Article/Communication Auteurs : Crystal J. Bae, Auteur ; Somayeh Dodge, Auteur Année de publication : 2023 Article en page(s) : pp 143 - 161 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse visuelle
[Termes IGN] cognition
[Termes IGN] compréhension de l'image
[Termes IGN] données spatiotemporelles
[Termes IGN] objet mobile
[Termes IGN] visualisation cartographique
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) This paper evaluates cognitively plausible geovisualization techniques for mapping movement data. With the widespread increase in the availability and quality of space-time data capturing movement trajectories of individuals, meaningful representations are needed to properly visualize and communicate trajectory data and complex movement patterns using geographic displays. Many visualization and visual analytics approaches have been proposed to map movement trajectories (e.g. space-time paths, animations, trajectory lines, etc.). However, little is known about how effective these complex visualizations are in capturing important aspects of movement data. Given the complexity of movement data which involves space, time, and context dimensions, it is essential to evaluate the communicative efficiency and efficacy of various visualization forms in helping people understand movement data. This study assesses the effectiveness of static and dynamic movement displays as well as visual variables in communicating movement parameters along trajectories, such as speed and direction. To do so, a web-based survey is conducted to evaluate the understanding of movement visualizations by a nonspecialist audience. This and future studies contribute fundamental insights into the cognition of movement visualizations and inspire new methods for the empirical evaluation of geovisualizations. Numéro de notice : A2023-221 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2022.2157879 Date de publication en ligne : 23/01/2023 En ligne : https://doi.org/10.1080/15230406.2022.2157879 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103167
in Cartography and Geographic Information Science > Vol 50 n° 2 (March 2023) . - pp 143 - 161[article]A spatiotemporal data model and an index structure for computational time geography / Bi Yu Chen in International journal of geographical information science IJGIS, vol 37 n° 3 (March 2023)
[article]
Titre : A spatiotemporal data model and an index structure for computational time geography Type de document : Article/Communication Auteurs : Bi Yu Chen, Auteur ; Yu-Bo Luo, Auteur ; Tao Jia, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 550 - 583 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] approche hiérarchique
[Termes IGN] données massives
[Termes IGN] données spatiotemporelles
[Termes IGN] modèle conceptuel de données spatio-temporelles
[Termes IGN] requête spatiotemporelle
[Termes IGN] stockage de données
[Termes IGN] Time-geographyRésumé : (auteur) The availability of Spatiotemporal Big Data has provided a golden opportunity for time geographical studies that have long been constrained by the lack of individual-level data. However, how to store, manage, and query a huge number of time geographic entities effectively and efficiently with complex spatiotemporal characteristics and relationships poses a significant challenge to contemporary GIS platforms. In this article, a hierarchical compressed linear reference (CLR) model is proposed to transform network-constrained time geographic entities from three-dimensional (3D) (x, y, t) space into two-dimensional (2D) space. Accordingly, time geographic entities can be represented as 2D spatial entities and stored in a classical spatial database. The proposed CLR model supports a hierarchical linear reference system (LRS) including not only underlying a link-based LRS but also multiple higher-level route-based LRSs. In addition, an LRS-based spatiotemporal index structure is developed to index both time geographic entities and the corresponding hierarchical network. The results of computational experiments on large datasets of space–time paths and prisms show that the proposed hierarchical CLR model is effective at storing and managing time geographic entities in road networks. The developed index structure achieves satisfactory query performance in milliseconds on large datasets of time geographic entities. Numéro de notice : A2023-153 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2128192 Date de publication en ligne : 03/10/2023 En ligne : https://doi.org/10.1080/13658816.2022.2128192 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102836
in International journal of geographical information science IJGIS > vol 37 n° 3 (March 2023) . - pp 550 - 583[article]Who owns the map? Data sovereignty and government spatial data collection, use, and dissemination / Peter A. Johnson in Transactions in GIS, vol 27 n° 1 (February 2023)
[article]
Titre : Who owns the map? Data sovereignty and government spatial data collection, use, and dissemination Type de document : Article/Communication Auteurs : Peter A. Johnson, Auteur ; Teresa Scassa, Auteur Année de publication : 2023 Article en page(s) : pp 275 - 289 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] carte
[Termes IGN] collecte de données
[Termes IGN] diffusion de données
[Termes IGN] domaine public
[Termes IGN] données localisées des bénévoles
[Termes IGN] données spatiotemporelles
[Termes IGN] droit d'auteur
[Termes IGN] OpenStreetMap
[Termes IGN] planification
[Termes IGN] pouvoirs publics
[Termes IGN] source de données
[Termes IGN] statut juridiqueRésumé : (auteur) Maps, created through the collection, assembly, and analysis of spatial data are used to support government planning and decision-making. Traditionally, spatial data used to create maps are collected, controlled, and disseminated by government, although over time, this role has shifted. This shift has been driven by the availability of alternate sources of data collected by private sector companies, and data contributed by volunteers to open mapping platforms, such as OpenStreetMap. In theorizing this shift, we provide examples of how governments use data sovereignty as a tool to shape spatial data collection, use, and sharing. We frame four models of how governments may navigate shifting spatial data sovereignty regimes; first, with government retaining complete control over data collection; second, with government contracting a third party to provide specific data collection services, but with data ownership and dissemination responsibilities resting with government; third, with government purchasing data under terms of access set by third party data collectors, who disseminate data to several parties, and finally, with government retreating from or relinquishing data sovereignty altogether. Within this rapidly changing landscape of data providers, we propose that governments must consider how to address data sovereignty concerns to retain their ability to control data use in the public interest. Numéro de notice : A2023-134 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.13024 Date de publication en ligne : 22/01/2023 En ligne : https://doi.org/10.1111/tgis.13024 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102680
in Transactions in GIS > vol 27 n° 1 (February 2023) . - pp 275 - 289[article]MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction / Du Yin in Geoinformatica, vol 27 n° 1 (January 2023)
[article]
Titre : MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction Type de document : Article/Communication Auteurs : Du Yin, Auteur ; Renhe Jiang, Auteur ; Jiewen Deng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 77 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] données multitemporelles
[Termes IGN] données spatiotemporelles
[Termes IGN] flux
[Termes IGN] gestion de trafic
[Termes IGN] origine - destination
[Termes IGN] réseau neuronal de graphes
[Termes IGN] système de transport intelligent
[Termes IGN] trafic urbain
[Termes IGN] transport public
[Termes IGN] utilisateurRésumé : (auteur) The passenger flow prediction of the public metro system is a core and critical part of the intelligent transportation system, and is essential for traffic management, metro planning, and emergency safety measures. Most methods chose the recent segment from historical data as input to predict the future traffic flow; however, this would lead to the loss of the inherent characteristic information of the metro passenger flow’s daily morning and evening peak. Therefore, this study aggregates the recent-term and long-term information and use a long-term Gated Convolutional Neural Network (Gated CNN) to extract the temporal feature from the complex historical data. On the other hand, typical models did not consider the different spatial dependencies between different metro stations; this work proposes various adjacent relationships to characterize the degree of association between nodes. In order to extract spatial and temporal features at the same time, the historical data of recent-term and long-term is merged together to extract spatial features through a multi-graph neural network module. By combining Gated CNN and multi-graph module, we propose a multi-time multi-graph neural network named MTMGNN for metro passenger flow prediction. The result of our experiment on real-world datasets shows that our model MTMGNN is better than all state-of-art methods. Numéro de notice : A2023-113 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-022-00466-1 Date de publication en ligne : 25/04/2022 En ligne : https://doi.org/10.1007/s10707-022-00466-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102478
in Geoinformatica > vol 27 n° 1 (January 2023) . - pp 77 - 105[article]Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions / Johannes Breidenbach in Annals of Forest Science, vol 79 n° 1 (2022)PermalinkModelling evacuation preparation time prior to floods: A machine learning approach / R. Sreejith in Sustainable Cities and Society, vol 87 (December 2022)PermalinkHuman mobility and COVID-19 transmission: a systematic review and future directions / Mengxi Zhang in Annals of GIS, vol 28 n° 4 (November 2022)PermalinkAn analysis of twitter as a relevant human mobility proxy / Fernando Terroso-Saenz in Geoinformatica, vol 26 n° 4 (October 2022)PermalinkIncremental road network update method with trajectory data and UAV remote sensing imagery / Jianxin Qin in ISPRS International journal of geo-information, vol 11 n° 10 (October 2022)PermalinkMonitoring spatiotemporal soil moisture changes in the subsurface of forest sites using electrical resistivity tomography (ERT) / Julian Fäth in Journal of Forestry Research, vol 33 n° 5 (October 2022)PermalinkThe FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation / Shuaijun Liu in Remote sensing of environment, vol 279 (September-15 2022)PermalinkA multi-source spatio-temporal data cube for large-scale geospatial analysis / Fan Gao in International journal of geographical information science IJGIS, vol 36 n° 9 (September 2022)PermalinkSpatial-temporal attentive LSTM for vehicle-trajectory prediction / Rui Jiang in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)PermalinkCoupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)Permalink