Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > analyse multivariée > analyse discriminante
analyse discriminanteVoir aussi |
Documents disponibles dans cette catégorie (107)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Classification of pine wilt disease at different infection stages by diagnostic hyperspectral bands / Niwen Li in Ecological indicators, vol 142 (September 2022)
[article]
Titre : Classification of pine wilt disease at different infection stages by diagnostic hyperspectral bands Type de document : Article/Communication Auteurs : Niwen Li, Auteur ; Langning Huo, Auteur ; Xiaoli Zhang, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aiguille
[Termes IGN] analyse discriminante
[Termes IGN] image hyperspectrale
[Termes IGN] Pinus densiflora
[Termes IGN] Pinus koraiensis
[Termes IGN] santé des forêts
[Termes IGN] signature spectrale
[Termes IGN] surveillance forestièreMots-clés libres : competitive adaptive reweighted sampling = échantillonnage compétitif adaptatif pondéré Résumé : (auteur) Pine wilt disease (PWD) is a very destructive forest disease that causes the mortality of pine. The infected trees usually die within three months, and the disease spreads fast with the long-horned beetle as the medium if the infected trees are not removed from the forest in time. Therefore, detecting the infected trees at different infection stage, especially the early infection, is crucial for preventing PWD spread. This study aims to exhibit the spectral differences of the pine needles between healthy pines and infected pines at different infection stages and reveal the diagnostic spectral bands for classifying the different infected stage trees. We collected needle samples from healthy, early-, middle-, late-stage infected trees in a Japanese pine (Pinus densiflora) forest and a Korean pine (Pinus koraiensis) forest in northern China to explore the spectral and biochemical properties differences of these four classes, and selected the sensitive bands combining competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA). The selected bands were used for the four infection stages classification by linear discriminant analysis (LDA) algorithm. The results show that Chlorophyll a, chlorophyll b, carotenoids, and moisture content decreases with the aggravation of infection. The green (510–530 nm), red-edge (680–760 nm), and short-wave infrared (1400–1420 nm and 1925–1965 nm) bands are the sensitive bands, and the overall accuracy is 77 % and 78 % for the Japanese pine and Korean pine respectively when using these bands for classifying healthy, early-, middle-, late-stage infected trees. The results demonstrate that physiological parameters including Chlorophyll a, chlorophyll b, carotenoids, and moisture content can be used as the diagnostic parameters of PWD, and the selected sensitive spectral bands are feasible for detecting the stress symptoms of the Japanese pine and Korean pine. Numéro de notice : A2022-617 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ecolind.2022.109198 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.1016/j.ecolind.2022.109198 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101374
in Ecological indicators > vol 142 (September 2022)[article]Discriminative information restoration and extraction for weakly supervised low-resolution fine-grained image recognition / Tiantian Yan in Pattern recognition, vol 127 (July 2022)
[article]
Titre : Discriminative information restoration and extraction for weakly supervised low-resolution fine-grained image recognition Type de document : Article/Communication Auteurs : Tiantian Yan, Auteur ; Jian Shi, Auteur ; Haojie Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108629 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] arbre aléatoire minimum
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de données
[Termes IGN] granularité d'image
[Termes IGN] image à basse résolution
[Termes IGN] image à haute résolution
[Termes IGN] relation sémantique
[Termes IGN] texture d'imageRésumé : (auteur) The existing methods of fine-grained image recognition mainly devote to learning subtle yet discriminative features from the high-resolution input. However, their performance deteriorates significantly when they are used for low quality images because a lot of discriminative details of images are missing. We propose a discriminative information restoration and extraction network, termed as DRE-Net, to address the problem of low-resolution fine-grained image recognition, which has widespread application potential, such as shelf auditing and surveillance scenarios. DRE-Net is the first framework for weakly supervised low-resolution fine-grained image recognition and consists of two sub-networks: (1) fine-grained discriminative information restoration sub-network (FDR) and (2) recognition sub-network with the semantic relation distillation loss (SRD-loss). The first module utilizes the structural characteristic of minimum spanning tree (MST) to establish context information for each pixel by employing the spatial structures between each pixel and other pixels, which can help FDR focus on and restore the critical texture details. The second module employs the SRD-loss to calibrate recognition sub-network by transferring the correct relationships between every two pixels on the feature map. Meanwhile the SRD-loss can further prompt the FDR to recover reliable and accurate fine-grained details and guide the recognition sub-network to perceive the discriminative features from the correct relationships. Extensive experiments on three benchmark datasets and one retail product dataset demonstrate the effectiveness of our proposed framework. Numéro de notice : A2022-555 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.patcog.2022.108629 Date de publication en ligne : 06/03/2022 En ligne : https://doi.org/10.1016/j.patcog.2022.108629 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101168
in Pattern recognition > vol 127 (July 2022) . - n° 108629[article]PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
[article]
Titre : PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Scott Hensley, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 123 - 139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] bande L
[Termes IGN] données lidar
[Termes IGN] forêt boréale
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] polarimétrie radar
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] semis de pointsRésumé : (auteur) This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m). Numéro de notice : A2022-195 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.02.008 Date de publication en ligne : 17/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.02.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99962
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 123 - 139[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Flexible Gabor-based superpixel-level unsupervised LDA for hyperspectral image classification / Sen Jia in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)
[article]
Titre : Flexible Gabor-based superpixel-level unsupervised LDA for hyperspectral image classification Type de document : Article/Communication Auteurs : Sen Jia, Auteur ; Qingqing Zhao, Auteur ; Jiayue Zhuang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 10394 - 10409 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Gabor
[Termes IGN] image hyperspectrale
[Termes IGN] ondelette de Gabor
[Termes IGN] segmentation d'image
[Termes IGN] superpixelRésumé : (auteur) Hyperspectral images encompass abundant information and provide unique characteristics for material classification. However, the labeling of training samples can be challenging in hyperspectral image classification. To address this problem, this study proposes a framework named flexible Gabor-based superpixel-level unsupervised linear discriminant analysis (FG- Su ULDA) to extract the most informative and discriminating features for classification. First, a number of 3-D flexible Gabor filters are rigorously designed using an asymmetric sinusoidal wave to sufficiently characterize the spatial–spectral structure in hyperspectral images. Then, an unsupervised linear discriminant analysis strategy guided by the entropy rate superpixel (ERS) segmentation algorithm, called Su ULDA, is skillfully introduced to reduce the extracted large amount of FG features. The Su ULDA method not only boosts the classification capability but also increases the peculiarity of features, with the aid of superpixel information. Finally, the achieved features are imported to the popular support vector machine classifier. The proposed FG- Su ULDA framework is applied to four real hyperspectral image data sets, and the experiments constantly prove that our FG- Su ULDA is superior to several state-of-the-art methods in both classification performance and computational efficiency, especially with scarce training samples. The codes of this work are available at http://jiasen.tech/papers/ for the sake of reproducibility. Numéro de notice : A2021-872 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3048994 Date de publication en ligne : 20/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3048994 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99131
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 12 (December 2021) . - pp 10394 - 10409[article]Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds / Alwin A. Hardenbol in Silva fennica, vol 55 n° 4 (September 2021)
[article]
Titre : Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds Type de document : Article/Communication Auteurs : Alwin A. Hardenbol, Auteur ; Anton Kuzmin, Auteur ; Lauri Korhonen, Auteur ; Pasi Korpelainen, Auteur ; Timo Kumpula, Auteur ; Matti Maltamo, Auteur ; Jari Kouki, Auteur Année de publication : 2021 Article en page(s) : n° 10515 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aire protégée
[Termes IGN] analyse discriminante
[Termes IGN] Betula (genre)
[Termes IGN] détection d'arbres
[Termes IGN] forêt boréale
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] orthoimage couleur
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Populus tremula
[Termes IGN] semis de points
[Termes IGN] variation saisonnièreRésumé : (auteur) Current remote sensing methods can provide detailed tree species classification in boreal forests. However, classification studies have so far focused on the dominant tree species, with few studies on less frequent but ecologically important species. We aimed to separate European aspen (Populus tremula L.), a biodiversity-supporting tree species, from the more common species in European boreal forests (Pinus sylvestris L., Picea abies [L.] Karst., Betula spp.). Using multispectral drone images collected on five dates throughout one thermal growing season (May–September), we tested the optimal season for the acquisition of mono-temporal data. These images were collected from a mature, unmanaged forest. After conversion into photogrammetric point clouds, we segmented crowns manually and automatically and classified the species by linear discriminant analysis. The highest overall classification accuracy (95%) for the four species as well as the highest classification accuracy for aspen specifically (user’s accuracy of 97% and a producer’s accuracy of 96%) were obtained at the beginning of the thermal growing season (13 May) by manual segmentation. On 13 May, aspen had no leaves yet, unlike birches. In contrast, the lowest classification accuracy was achieved on 27 September during the autumn senescence period. This is potentially caused by high intraspecific variation in aspen autumn coloration but may also be related to our date of acquisition. Our findings indicate that multispectral drone images collected in spring can be used to locate and classify less frequent tree species highly accurately. The temporal variation in leaf and canopy appearance can alter the detection accuracy considerably. Numéro de notice : A2021-735 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10515 Date de publication en ligne : 14/07/2021 En ligne : https://doi.org/10.14214/sf.10515 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98691
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10515[article]Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia / Peter Kitin in Annals of Forest Science, vol 78 n° 2 (June 2021)PermalinkIdentifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis / Marta Sapena Moll in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)PermalinkDevelopment and analysis of land-use/land-cover spatio-temporal metrics in urban environments: Exploring urban growth patterns and linkages to socio-economic factors / Marta Sapena Moll (2021)PermalinkExamining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])PermalinkPerception de scène par un système multi-capteurs, application à la navigation dans des environnements d'intérieur structuré / Marwa Chakroun (2021)PermalinkRemote sensing analysis of small scale dynamic phenomena in the atmospheric boundary layer / Kostas Cheliotis (2021)PermalinkDiscriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data / Sugandh Chauhan in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)PermalinkA convolutional neural network with mapping layers for hyperspectral image classification / Rui Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)PermalinkA discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data / Qingwang Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)PermalinkCloud detection by luminance and inter-band parallax analysis for pushbroom satellite imagers / Tristan Dagobert in IPOL Journal, Image Processing On Line, vol 10 (2020)Permalink