Descripteur
Termes IGN > mathématiques > analyse mathématique > analyse fonctionnelle (mathématiques)
analyse fonctionnelle (mathématiques)Voir aussi |
Documents disponibles dans cette catégorie (18)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol 10 n° 1 (June 2020)
[article]
Titre : Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning Type de document : Article/Communication Auteurs : Yann Méneroux , Auteur ; Arnaud Le Guilcher , Auteur ; Guillaume Saint Pierre, Auteur ; Mohammad Ghasemi Hamed, Auteur ; Sébastien Mustière , Auteur ; Olivier Orfila, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : pp 101 - 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse fonctionnelle (mathématiques)
[Termes IGN] apprentissage profond
[Termes IGN] carte routière
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] détection d'objet
[Termes IGN] données routières
[Termes IGN] feu de circulation
[Termes IGN] inférence
[Termes IGN] reconnaissance de formes
[Termes IGN] signalisation routière
[Termes IGN] trace GPS
[Termes IGN] trafic routier
[Termes IGN] transformation en ondelettes
[Termes IGN] vitesseRésumé : (auteur) The increasing availability of large-scale global positioning system data stemming from in-vehicle-embedded terminal devices enables the design of methods deriving road network cartographic information from drivers’ recorded traces. Some machine learning approaches have been proposed in the past to train automatic road network map inference, and recently this approach has been successfully extended to infer road attributes as well, such as speed limitation or number of lanes. In this paper, we address the problem of detecting traffic signals from a set of vehicle speed profiles, under a classification perspective. Each data instance is a speed versus distance plot depicting over a hundred profiles on a 100-m-long road span. We proposed three different ways of deriving features: The first one relies on the raw speed measurements; the second one uses image recognition techniques; and the third one is based on functional data analysis. We input them into most commonly used classification algorithms, and a comparative analysis demonstrated that a functional description of speed profiles with wavelet transforms seems to outperform the other approaches with most of the tested classifiers. It also highlighted that random forests yield an accurate detection of traffic signals, regardless of the chosen feature extraction method, while keeping a remarkably low confusion rate with stop signs. Numéro de notice : A2020-336 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41060-019-00197-x Date de publication en ligne : 04/10/2019 En ligne : https://doi.org/10.1007/s41060-019-00197-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93755
in International Journal of Data Science and Analytics JDSA > vol 10 n° 1 (June 2020) . - pp 101 - 119[article]Documents numériques
peut être téléchargé
Traffic signal detection ... - preprintAdobe Acrobat PDF Asymptotic behavior of the growth-fragmentation equation with bounded fragmentation rate / Etienne Bernard in Journal of functional analysis, vol 272 n° 8 (15 April 2017)
[article]
Titre : Asymptotic behavior of the growth-fragmentation equation with bounded fragmentation rate Type de document : Article/Communication Auteurs : Etienne Bernard , Auteur ; Pierre Gabriel, Auteur Année de publication : 2017 Projets : KIBORD / Article en page(s) : pp 3455 - 3485 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse numérique
[Termes IGN] analyse fonctionnelle (mathématiques)
[Termes IGN] équation intégrale
[Termes IGN] invariantRésumé : (Auteur) We are interested in the large time behavior of the solutions to the growth-fragmentation equation. We work in the space of integrable functions weighted with the principal dual eigenfunction of the growth-fragmentation operator. This space is the largest one in which we can expect convergence to the steady size distribution. Although this convergence is known to occur under fairly general conditions on the coefficients of the equation, we prove that it does not happen uniformly with respect to the initial data when the fragmentation rate in bounded. First we get the result for fragmentation kernels which do not form arbitrarily small fragments by taking advantage of the Dyson–Phillips series. Then we extend it to general kernels by using the notion of quasi-compactness and the fact that it is a topological invariant. Numéro de notice : A2017-779 Affiliation des auteurs : LASTIG LAREG+Ext (2012-mi2018) Thématique : MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jfa.2017.01.009 Date de publication en ligne : 31/01/2017 En ligne : https://doi.org/10.1016/j.jfa.2017.01.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88986
in Journal of functional analysis > vol 272 n° 8 (15 April 2017) . - pp 3455 - 3485[article]Convergence of one-step projected gradient methods for variational inequalities / Paul-Emile Maingé in Journal of Optimization Theory and Applications, vol 171 n° 1 (October 2016)
[article]
Titre : Convergence of one-step projected gradient methods for variational inequalities Type de document : Article/Communication Auteurs : Paul-Emile Maingé, Auteur ; Marie-Line Gobinddass , Auteur Année de publication : 2016 Article en page(s) : pp 146 - 168 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Mathématique
[Termes IGN] algorithme du gradient
[Termes IGN] calcul variationnel
[Termes IGN] optimisation (mathématiques)Résumé : (auteur) In this paper, we revisit the numerical approach to some classical variational inequalities, with monotone and Lipschitz continuous mapping A, by means of a projected reflected gradient-type method. A main feature of the method is that it formally requires only one projection step onto the feasible set and one evaluation of the involved mapping per iteration. Contrary to what was done so far, we establish the convergence of the method in a more general setting that allows us to use varying step-sizes without any requirement of additional projections. A linear convergence rate is obtained, when A is assumed to be strongly monotone. Preliminary numerical experiments are also performed. Numéro de notice : A2016-973 Affiliation des auteurs : LASTIG LAREG+Ext (2012-mi2018) Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10957-016-0972-4 Date de publication en ligne : 06/07/2016 En ligne : http://dx.doi.org/10.1007/s10957-016-0972-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94217
in Journal of Optimization Theory and Applications > vol 171 n° 1 (October 2016) . - pp 146 - 168[article]
Titre : Quantization on nilpotent lie groups Type de document : Monographie Auteurs : Veronique Fischer, Auteur ; Michael Ruzhansky, Auteur Editeur : Berlin, Zurich, Stuttgart : Birkhaüser Année de publication : 2016 Collection : Progress in Mathematics, ISSN 0743-1643 num. 314 Importance : 557 p. ISBN/ISSN/EAN : 978-3-319-29558-9 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse mathématique
[Termes IGN] analyse fonctionnelle (mathématiques)
[Termes IGN] groupe de Lie
[Termes IGN] topologieIndex. décimale : 23.30 Analyse mathématique Résumé : (Auteur) [Preface] The purpose of this monograph is to give an exposition of the global quantization of operators on nilpotent homogeneous Lie groups. We also present the background analysis on homogeneous and graded nilpotent Lie groups. The analysis on homogeneous nilpotent Lie groups drew a considerable attention from the 70’s onwards. Research went in several directions, most notably in harmonic analysis and in the study of hypoellipticity and solvability of partial differential equations. Over the decades the subject has been developing on different levels with advances in the analysis on the Heisenberg group, stratified Lie groups, graded Lie groups, and general homogeneous Lie groups. In the last years analysis on homogeneous Lie groups and also on other types of Lie groups has received another boost with newly found applications and further advances in many topics. Examples of this boost are subelliptic estimates, multiplier theorems, index formulae, nonlinear problems, potential theory, and symbolic calculi tracing full symbols of operators. In particular, the latter has produced further applications in the study of linear and nonlinear partial differential equations, requiring the knowledge of lower order terms of the operators. Because of the current advances, it seems to us that a systematic exposition of the recently developed quantizations on Lie groups is now desirable. This requires bringing together various parts of the theory in the right generality, and extending notions and techniques known in particular cases, for instance on compact Lie groups or on the Heisenberg group. In order to do so, we start with a review of the recent developments in the global quantization on compact Lie groups. In this, we follow mostly the development of this subject in the monograph [RT10a] by Turunen and the second author, as well as its further progress in subsequent papers. After a necessary exposition of the background analysis on graded and homogeneous Lie groups, we present the quantization on general graded Lie groups. As the final part of the monograph, we work out details of the general theory developed in this book in the particular case of the Heisenberg group. In the introduction, we will provide a link between, on one hand, the symbolic calculus of matrix valued symbols on compact Lie groups with, on the other hand, different approaches to the symbolic calculus on the Heisenberg group for instance. We will also motivate further our choices of presentation from the point of view of the development of the theory and of its applications. We would like to thank Fulvio Ricci for discussions and for useful comments on the historical overview of parts of the subject that we tried to present in the introduction. We would also like to thank Gerald Folland for comments leading to improvements of some parts of the monograph. Finally, it is our pleasure to acknowledge the financial support by EPSRC (grant EP/K039407/1), Marie Curie FP7 (Project PseudodiffOperatorS - 301599), and by the Leverhulme Trust (grant RPG-2014-02) at different stages of preparing this monograph. Note de contenu :
Introduction
Notation and conventions
1 Preliminaries on Lie groups
1.1 Lie groups, representations, and Fourier transform
1.2 Liealgebrasandvectorfields
1.3 Universalenvelopingalgebraanddifferentialoperators
1.4 DistributionsandSchwartzkerneltheorem
1.5 Convolutions
1.6 NilpotentLiegroupsandalgebras
1.7 Smooth vectors and infinitesimal representations . .
1.8 Planchereltheorem
2 Quantization on compact Lie groups
2.1 FourieranalysisoncompactLiegroups
2.2 Pseudo-differentialoperatorsoncompactLiegroups
3 Homogeneous Lie groups
3.1 GradedandhomogeneousLiegroups
3.2 OperatorsonhomogeneousLiegroups
4 Rockland operators and Sobolev spaces
4.1 Rocklandoperators
4.2 PositiveRocklandoperators
4.3 FractionalpowersofpositiveRocklandoperators
4.4 SobolevspacesongradedLiegroups
4.5 Hulanicki’s theorem
5 Quantization on graded Lie groups
5.1 Symbolsandquantization
5.2 Symbol classes
5.3 SpectralmultipliersinpositiveRocklandoperators
5.4 Kernelsofpseudo-differentialoperators
5.5 Symboliccalculus
5.6 Amplitudesandamplitudeoperators
5.7 Calderon-Vaillancourt theorem
5.8 Parametrices, ellipticity and hypoellipticity
6 Pseudo-differential operators on the Heisenberg group
6.1 Preliminaries
6.2 DualoftheHeisenberggroup
6.3 Differenceoperators
6.4 Shubin classes
6.5 Quantization and symbol classes on the Heisenberg group
6.6 Parametrices
A Miscellaneous
B Group C∗ and von Neumann algebrasNuméro de notice : 22745 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE Nature : Monographie En ligne : http://dx.doi.org/10.1007/978-3-319-29558-9 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86056 Documents numériques
en open access
22745_Quantization on nilpotent lie groupsAdobe Acrobat PDF
Titre : Methods of Mathematical Modelling : Continuous Systems and Differential Equations Type de document : Guide/Manuel Auteurs : Thomas Witelski, Auteur ; Mark Bowen, Auteur Editeur : Springer International Publishing Année de publication : 2015 Importance : 324 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-3-319-23042-9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Mathématique
[Termes IGN] analyse mathématique
[Termes IGN] calcul différentiel
[Termes IGN] calcul variationnel
[Termes IGN] équation différentielle
[Termes IGN] équation linéaire
[Termes IGN] modèle mathématique
[Termes IGN] série de Fourier
[Termes IGN] variableRésumé : (éditeur) This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences. Note de contenu : Part I- Formulation of Models
1- Rate equations
2- Transport equations
3- Variational principles
4- Dimensional scaling analysis
Part II- Solution Techniques
5- Self-similar scaling solutions of differential equations
6- Perturbation methods
7- Boundary layer theory
8- Long-wave asymptotics for PDE problems
9- Weakly-nonlinear oscillators
10- Fast/slow dynamical systems
11- Reduced models for PDE problems
Part III- Case Studies
12- Modelling in applied fluid dynamics
EpilogueNuméro de notice : 25830 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE Nature : Manuel En ligne : https://doi.org/10.1007/978-3-319-23042-9 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95152 PermalinkTrajectoires en consommation minimale pour le déploiement d'une formation de satellites / J.B. Thevenet (2007)PermalinkMéthodes et solutions pour maîtriser le risque de rupture de digues, des modèles de rupture de digues couplés à un SIG / D. Serre in Revue internationale de géomatique, vol 16 n°3 - 4 (septembre – novembre 2006)PermalinkSensitivity analysis and uncertainty analysis for vector geographical applications / Olivier Bonin (2006)PermalinkRéalisation d'un outil d'analyse et de localisation des données accidents de la route / M. Skrabanja (2005)PermalinkL'optimisation : deux ou trois choses que je sais d'elle / J.B. Hiriart-Urruty (2002)PermalinkAutomatisierung der kartographischen Verdrängung mittels Energieminimierung / Dirk Burghardt (2001)PermalinkMécanismes de segmentation d'images : de la modélisation à la création d'algorithmes / Christophe Thomas (1992)PermalinkProbability and statistics in geodesy and geophysics / L. Kubackova (1987)PermalinkCours d'élasticité / J.P. Henry (1983)Permalink