Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > analyse spectrale
analyse spectrale |
Documents disponibles dans cette catégorie (109)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Point cloud data processing optimization in spectral and spatial dimensions based on multispectral Lidar for urban single-wood extraction / Shuo Shi in ISPRS International journal of geo-information, vol 12 n° 3 (March 2023)
[article]
Titre : Point cloud data processing optimization in spectral and spatial dimensions based on multispectral Lidar for urban single-wood extraction Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Xingtao Tang, Auteur ; Bowen Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse spectrale
[Termes IGN] arbre urbain
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Houston (Texas)
[Termes IGN] interpolation
[Termes IGN] réflectance spectrale
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Lidar can effectively obtain three-dimensional information on ground objects. In recent years, lidar has developed rapidly from single-wavelength to multispectral hyperspectral imaging. The multispectral airborne lidar Optech Titan is the first commercial system that can collect point cloud data on 1550, 1064, and 532 nm channels. This study proposes a method of point cloud segmentation in the preprocessed intensity interpolation process to solve the problem of inaccurate intensity at the boundary during point cloud interpolation. The entire experiment consists of three steps. First, a multispectral lidar point cloud is obtained using point cloud segmentation and intensity interpolation; the spatial dimension advantage of the multispectral point cloud is used to improve the accuracy of spectral information interpolation. Second, point clouds are divided into eight categories by constructing geometric information, spectral reflectance information, and spectral characteristics. Accuracy evaluation and contribution analysis are also conducted through point cloud truth value and classification results. Lastly, the spatial dimension information is enhanced by point cloud drop sampling, the method is used to solve the error caused by airborne scanning and single-tree extraction of urban trees. Classification results showed that point cloud segmentation before intensity interpolation can effectively improve the interpolation and classification accuracies. The total classification accuracy of the data is improved by 3.7%. Compared with the extraction result (377) of single wood without subsampling treatment, the result of the urban tree extraction proved the effectiveness of the proposed method with a subsampling algorithm in improving the accuracy. Accordingly, the problem of over-segmentation is solved, and the final single-wood extraction result (329) is markedly consistent with the real situation of the region. Numéro de notice : A2023-159 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi12030090 Date de publication en ligne : 23/02/2023 En ligne : https://doi.org/10.3390/ijgi12030090 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102852
in ISPRS International journal of geo-information > vol 12 n° 3 (March 2023) . - n° 90[article]Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data / Thuong V. Tran in GIScience and remote sensing, vol 60 n° 1 (2023)
[article]
Titre : Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data Type de document : Article/Communication Auteurs : Thuong V. Tran, Auteur ; David Bruce, Auteur ; Cho-Ying Huang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2163070 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spectrale
[Termes IGN] changement d'occupation du sol
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] parcelle agricole
[Termes IGN] sécheresse
[Termes IGN] série temporelle
[Termes IGN] surveillance agricole
[Termes IGN] variation temporelle
[Termes IGN] Viet NamRésumé : (auteur) Using a multivariate drought index that incorporates important environmental variables and is suitable for a specific geographical region is essential to fully understanding the pattern and impacts of drought severity. This study applied feature scaling algorithms to MODIS time-series imagery to develop an integrated Multivariate Drought Index (iMDI). The iMDI incorporates the vegetation condition index (VCI), the temperature condition index (TCI), and the evaporative stress index (ESI). The 54,474 km2 Vietnamese Central Highlands region, which has been significantly affected by drought severity for several decades, was selected as a test site to assess the feasibility of the iMDI. Spearman correlation between the iMDI and other commonly used spectral drought indices (i.e. the Drought Severity Index (DSI–12) and the annual Vegetation Health Index (VHI–12)) and ground-based drought indices (i.e. the Standardized Precipitation Index (SPI–12) and the Reconnaissance Drought Index (RDI–12)) was employed to evaluate performance of the proposed drought index. Pixel-based linear regression together with clustering models of the iMDI time-series was applied to characterize the spatiotemporal pattern of drought from 2001 to 2020. In addition, a persistent area of LULC types (i.e. forests, croplands, and shrubland) during the 2001–2020 period was used to understand drought variation in relation to LULC. Results suggested that the iMDI outperformed the other spectral drought indices (r > 0.6; p Numéro de notice : A2023-042 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2163070 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2163070 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102329
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2163070[article]A method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination / Kaili Zhang in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : A method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination Type de document : Article/Communication Auteurs : Kaili Zhang, Auteur ; Yonggang Chen, Auteur ; Wentao Wang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2158948 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spatiale
[Termes IGN] analyse spectrale
[Termes IGN] classification Spectral angle mapper
[Termes IGN] classification spectrale
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] données vectorielles
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] pixel
[Termes IGN] précision de la classification
[Termes IGN] signature texturale
[Termes IGN] similitude spectrale
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) In the study of remote sensing image classification, feature extraction and selection is an effective method to distinguish different classification targets. Constructing a high-quality spectral-spatial feature and feature combination has been a worthwhile topic for improving classification accuracy. In this context, this study constructed a spectral-spatial feature, namely the Pixel Neighbourhood Similarity (PNS) index. Meanwhile, the PNS index and 19 spectral, textural and terrain features were involved in the Correlation-based Feature Selection (CFS) algorithm for feature selection to generate a feature combination (PNS-CFS). To explore how PNS and PNS-CFS improve the classification accuracy of land types. The results show that: (1) The PNS index exhibited clear boundaries between different land types. The performance quality of PNS was relatively highest compared to other spectral-spatial features, namely the Vector Similarity (VS) index, the Change Vector Intensity (CVI) index and the Correlation (COR) index. (2) The Overall Accuracy (OA) of the PNS-CFS was 94.66% and 93.59% in study areas 1 and 2, respectively. These were 7.48% and 6.02% higher than the original image data (ORI) and 7.27% and 2.39% higher than the single-dimensional feature combination (SIN-CFS). Compared to the feature combinations of VS, CVI, and COR indices (VS-CFS, CVI-COM, COR-COM), PNS-CFS had the relatively highest performance and classification accuracy. The study demonstrated that the PNS index and PNS-CFS have a high potential for image classification. Numéro de notice : A2023-059 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2158948 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/10106049.2022.2158948 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102397
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2158948[article]Global forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis / Jinpei Chen in GPS solutions, vol 26 n° 3 (July 2022)
[article]
Titre : Global forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis Type de document : Article/Communication Auteurs : Jinpei Chen, Auteur ; Nan Zhi, Auteur ; Haofan Liao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 69 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] analyse diachronique
[Termes IGN] analyse spectrale
[Termes IGN] apprentissage profond
[Termes IGN] carte ionosphérique mondiale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] correction ionosphérique
[Termes IGN] modèle dynamique
[Termes IGN] positionnement par GNSS
[Termes IGN] temps de convergence
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) The widely used GNSS correction services for high precision positioning take advantage of accurate real-time TEC forecasting based on vertical total electron content (VTEC) maps. The methods for modeling and forecasting are mainly based on overly simplified assumptions, which in principle cannot reflect the real situations due to limitations of the mathematical formulations. Therefore, these methods cannot comprehensively capture the features of ionospheric TEC in spatial–temporal series. To overcome the problems caused by such assumptions, we combine ConvLSTM (convolutional long short-term memory) with spectrum analysis. The method allows the extraction of high-resolution spatial–temporal patterns of the ionospheric VTEC maps and accelerates the convergence time of neural networks. Extensive experiments have been carried out for short- and long-term forecasting and demonstrated that the performance of our method is better than other state-of-the-art models developed for various time series analysis methods. Based on the data from global ionospheric maps (GIMs) products, the results show that the root-mean-square error (RMSE) of global VTEC forecasting by our method substantially improves for two hours intervals over the years 2015, 2016, 2017 and 2019 compared to existing methods, specifically, 20–50% reduction on 1 or 2 h forecasting in terms of RMSE. In addition, the method is sufficient to support real-time forecasting since it takes less than one second to output global forecasting solutions. With these properties, we can facilitate real-time and highly accurate ionosphere correction services beneficial to numerous GNSS correct services and positioning terminals. Numéro de notice : A2022-378 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01253-z Date de publication en ligne : 13/04/2022 En ligne : https://doi.org/10.1007/s10291-022-01253-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100638
in GPS solutions > vol 26 n° 3 (July 2022) . - n° 69[article]Probabilistic unsupervised classification for large-scale analysis of spectral imaging data / Emmanuel Paradis in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
[article]
Titre : Probabilistic unsupervised classification for large-scale analysis of spectral imaging data Type de document : Article/Communication Auteurs : Emmanuel Paradis, Auteur Année de publication : 2022 Article en page(s) : n° 102675 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] analyse spectrale
[Termes IGN] classification barycentrique
[Termes IGN] classification ISODATA
[Termes IGN] classification non dirigée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de changement
[Termes IGN] entropie
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] Matlab
[Termes IGN] occupation du solRésumé : (auteur) Land cover classification of remote sensing data is a fundamental tool to study changes in the environment such as deforestation or wildfires. A current challenge is to quantify land cover changes with real-time, large-scale data from modern hyper- or multispectral sensors. A range of methods are available for this task, several of them being based on the k-means classification method which is efficient when classes of land cover are well separated. Here a new algorithm, called probabilistic k-means, is presented to solve some of the limitations of the standard k-means. It is shown that the new algorithm performs better than the standard k-means when the data are noisy. If the number of land cover classes is unknown, an entropy-based criterion can be used to select the best number of classes. The proposed new algorithm is implemented in a combination of R and C computer codes which is particularly efficient with large data sets: a whole image with more than 3 million pixels and covering more than 10,000 km2 can be analysed in a few minutes. Four applications with hyperspectral and multispectral data are presented. For the data sets with ground truth data, the overall accuracy of the probabilistic k-means was substantially improved compared to the standard k-means. One of these data sets includes more than 120 million pixels, demonstrating the scalability of the proposed approach. These developments open new perspectives for the large scale analysis of remote sensing data. All computer code are available in an open-source package called sentinel. Numéro de notice : A2022-193 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102675 Date de publication en ligne : 06/01/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102675 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99954
in International journal of applied Earth observation and geoinformation > vol 107 (March 2022) . - n° 102675[article]Comparing methods to extract crop height and estimate crop coefficient from UAV imagery using structure from motion / Nitzan Malachy in Remote sensing, vol 14 n° 4 (February-2 2022)PermalinkMapping burned areas and land-uses in Kangaroo Island using an object-based image classification framework and Landsat 8 Imagery from Google Earth Engine / Jiyu Liu in Geomatics, Natural Hazards and Risk, vol 13 (2022)PermalinkPermalinkParticle swarm optimization based water index (PSOWI) for mapping the water extents from satellite images / Mohammad Hossein Gamshadzaei in Geocarto international, vol 36 n° 20 ([01/12/2021])PermalinkEndmember bundle extraction based on multiobjective optimization / Rong Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)PermalinkAutomatic filter coefficient calculation in lifting scheme wavelet transform for lossless image compression / Ignacio Hernández-Bautista in The Visual Computer, vol 37 n° 5 (May 2021)PermalinkPermalinkHyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition / Yuanyang Bu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)PermalinkSuper-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)PermalinkUrban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January-1 2021)Permalink