Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > traitement d'image radar > polarimétrie radar
polarimétrie radarVoir aussi |
Documents disponibles dans cette catégorie (177)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
[article]
Titre : PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Scott Hensley, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 123 - 139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] bande L
[Termes IGN] données lidar
[Termes IGN] forêt boréale
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] polarimétrie radar
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] semis de pointsRésumé : (auteur) This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m). Numéro de notice : A2022-195 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.02.008 Date de publication en ligne : 17/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.02.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99962
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 123 - 139[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Global and climate challenges, graph-based data analysis for multisource information extraction / Morgane Batelier (2022)
Titre : Global and climate challenges, graph-based data analysis for multisource information extraction Type de document : Mémoire Auteurs : Morgane Batelier, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 43 p. Format : 21 x 30 cm Note générale : Bibliographie
Mémoire de fin d'études, cycle des ingénieurs ENSG 3ème année, FRSLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] Arctique, océan
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] glace de mer
[Termes IGN] image hyperspectrale
[Termes IGN] image Sentinel-SAR
[Termes IGN] polarimétrie radar
[Termes IGN] traitement d'image radarIndex. décimale : MPT Mémoires de fin d'études du Master Méthodes physiques en télédétection Résumé : (Auteur) During my end-of-studies internship, I worked on the development of a label propagation algorithm for remote sensing data, using Deep Learning. It was mainly applied to sea ice classification using SAR Sentinel-1 data, and to hyperspectral imaging in order to be effective to multimodal remote sensing. I started by the bibliography, during which we decided with my supervisors the method I was going to work from. Then, I worked on the algorithm implementation that was the longest phase. Finally, the last part of my work was the certification and improvement of the results using different process. Note de contenu : Introduction
1. Remote Sensing in the Arctic
1.1 Challenges of the Arctic
1.2 Sea Ice
2. Label Propagation for Deep Learning
2.1 Preliminaries
2.2 Transductive Propagation Network for Few-shot Learning
3. Multimodal Remote Sensing Data
3.1 Synthetic Aperture Radar
3.2 Hyperspectral Imaging
4. Experimental results
4.1 Datasets
4.2 Improvement Methods
4.3 Discussion and future of the algorithm
ConclusionNuméro de notice : 26935 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : Center for Integrated Remote Sensing and Forecasting for Arctic Operations CIRFA Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102059 Documents numériques
en open access
Global and climate challenges, graph-based data analysis for multisource information extraction - pdf auteurAdobe Acrobat PDF Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and PolSAR data: A comparative evaluation / Hamid Jafarzadeh in Remote sensing, vol 13 n° 21 (November-1 2021)
[article]
Titre : Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and PolSAR data: A comparative evaluation Type de document : Article/Communication Auteurs : Hamid Jafarzadeh, Auteur ; Masoud Mahdianpari, Auteur ; Eric Gill, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4405 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] boosting adapté
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données polarimétriques
[Termes IGN] ensachage
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] image radar moirée
[Termes IGN] image ROSISRésumé : (auteur) In recent years, several powerful machine learning (ML) algorithms have been developed for image classification, especially those based on ensemble learning (EL). In particular, Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) methods have attracted researchers’ attention in data science due to their superior results compared to other commonly used ML algorithms. Despite their popularity within the computer science community, they have not yet been well examined in detail in the field of Earth Observation (EO) for satellite image classification. As such, this study investigates the capability of different EL algorithms, generally known as bagging and boosting algorithms, including Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), XGBoost, LightGBM, and Random Forest (RF), for the classification of Remote Sensing (RS) data. In particular, different classification scenarios were designed to compare the performance of these algorithms on three different types of RS data, namely high-resolution multispectral, hyperspectral, and Polarimetric Synthetic Aperture Radar (PolSAR) data. Moreover, the Decision Tree (DT) single classifier, as a base classifier, is considered to evaluate the classification’s accuracy. The experimental results demonstrated that the RF and XGBoost methods for the multispectral image, the LightGBM and XGBoost methods for hyperspectral data, and the XGBoost and RF algorithms for PolSAR data produced higher classification accuracies compared to other ML techniques. This demonstrates the great capability of the XGBoost method for the classification of different types of RS data. Numéro de notice : A2021-823 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13214405 Date de publication en ligne : 02/11/2021 En ligne : https://doi.org/10.3390/rs13214405 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98938
in Remote sensing > vol 13 n° 21 (November-1 2021) . - n° 4405[article]Coniferous and broad-leaved forest distinguishing using L-band polarimetric SAR data / Fang Shang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
[article]
Titre : Coniferous and broad-leaved forest distinguishing using L-band polarimetric SAR data Type de document : Article/Communication Auteurs : Fang Shang, Auteur ; Taiga Saito, Auteur ; Saya Ohi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 7487 - 7499 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] détection de changement
[Termes IGN] détection de cible
[Termes IGN] distribution spatiale
[Termes IGN] forêt de feuillus
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image radar moirée
[Termes IGN] Japon
[Termes IGN] Pinophyta
[Termes IGN] polarimétrie radarRésumé : (auteur) This article proposes a coniferous and broad-leaved forest distinguishing method using L-band polarimetric SAR data based on the structure-orientation parameter. The structure-orientation parameter is one of the averaged Stokes vector-based discriminators which is sensitive to the composition of equivalent horizontal and vertical structures. In the proposed method, the structure-orientation parameters is compensated by employing the scattered power information to remove the influence of the topography. The final distinguishing result is generated based on the statistical feature of the compensated parameters. The experiments using several sets of ALOS2-PALSAR2 level 1.1 data prove that the proposed method has high performance for forest-type distinguishing. Numéro de notice : A2021-648 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3032468 Date de publication en ligne : 03/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3032468 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98355
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 9 (September 2021) . - pp 7487 - 7499[article]Unsupervised denoising for satellite imagery using wavelet directional cycleGAN / Shaoyang Kong in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)
[article]
Titre : Unsupervised denoising for satellite imagery using wavelet directional cycleGAN Type de document : Article/Communication Auteurs : Shaoyang Kong, Auteur ; Cheng Hu, Auteur ; Rui Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 6573 - 6585 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] filtrage du bruit
[Termes IGN] image radar
[Termes IGN] Insecta
[Termes IGN] polarimétrie radar
[Termes IGN] réseau antagoniste génératif
[Termes IGN] transformation en ondelettesRésumé : (auteur) The measurement of insect radar cross section (RCS) is a prerequisite for the studies such as the quantitative estimation of insect population density and the identification of insects using entomological radar. In this article, we established a multiband polarimetric RCS measurement system in the microwave anechoic chamber. The targets’ range profile at different frequencies can be obtained based on the step frequency continuous wave, and meanwhile the clutter elimination and polarimetric calibration were applied to reduce the measuring error. The multifrequency (X-/Ku-/Ka-bands) polarimetric RCSs of 169 insects belonging to 21 species were measured and reported, which is the first time to systematically present the multifrequency polarimetric RCSs of insects. The mass of all specimens range from 25.6 to 964 mg, and their ventral-aspect RCSs range from −57.47 to −32.17 dBsm at X-band, from −48.27 to −33.87 dBsm at Ku-band and from −69.76 to −36.40 dBsm at Ka-band. For small insects less than 300 mg, the HH polarization RCS increases rapidly with frequency at X-band and fluctuates with the frequency at Ku-band, while the VV polarization RCS increases monotonically with frequency at X- and Ku-band. For larger insects, the HH polarization RCS decreased slowly with frequency at X-band and fluctuates with the frequency at Ku-band, while the VV polarization RCS increases with the frequency, then reaches the maximum, finally fluctuates with the frequency. At Ka-band, the measured polarization RCS versus frequency curves are smooth and all show similar variation. The measurement results verify the effectiveness and accuracy of the established system. Numéro de notice : A2021-631 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3025601 Date de publication en ligne : 08/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3025601 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98281
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 8 (August 2021) . - pp 6573 - 6585[article]Model-based estimation of forest canopy height and biomass in the Canadian boreal forest using radar, LiDAR, and optical remote sensing / Michael L. Benson in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)PermalinkPolSAR ship detection based on neighborhood polarimetric covariance matrix / Tao Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)PermalinkInversion of solar-induced chlorophyll fluorescence using polarization measurements of vegetation / Haiyan Yao in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 5 (May 2021)PermalinkGraph convolutional networks by architecture search for PolSAR image classification / Hongying Liu in Remote sensing, vol 13 n° 7 (April-1 2021)PermalinkUsing a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide / Chaoyang Niu in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)PermalinkOn the polarimetric variable improvement via alignment of subarray channels in PPAR using weather returns / Igor R. Ivić in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)PermalinkForest height estimation using a single-pass airborne L-band polarimetric and interferometric SAR system and tomographic techniques / Yue Huang in Remote sensing, Vol 13 n° 3 (February 2021)PermalinkTropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)PermalinkEvaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes / Audrey Mercier (2021)PermalinkPermalink