Descripteur
Documents disponibles dans cette catégorie (165)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Titre : DeepSim-Nets: Deep Similarity Networks for stereo image matching Type de document : Article/Communication Auteurs : Mohamed Ali Chebbi, Auteur ; Ewelina Rupnik , Auteur ; Marc Pierrot-Deseilligny , Auteur ; Paul Lopes, Auteur Editeur : Computer vision foundation CVF Année de publication : 2023 Conférence : CVPR 2023, IEEE Conference on Computer Vision and Pattern Recognition 18/06/2023 22/06/2023 Vancouver Colombie britannique - Canada OA Proceedings Importance : pp 2096 - 2104 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] chaîne de traitement
[Termes IGN] géométrie de l'image
[Termes IGN] géométrie épipolaire
[Termes IGN] réseau neuronal profondIndex. décimale : 35.20 Traitement d'image Résumé : (auteur) We present three multi-scale similarity learning architectures, or DeepSim networks. These models learn pixel-level matching with a contrastive loss and are agnostic to the geometry of the considered scene. We establish a middle ground between hybrid and end-to-end approaches by learning to densely allocate all corresponding pixels of an epipolar pair at once. Our features are learnt on large image tiles to be expressive and capture the scene's wider context. We also demonstrate that curated sample mining can enhance the overall robustness of the predicted similarities and improve the performance on radiometrically homogeneous areas. We run experiments on aerial and satellite datasets. Our DeepSim-Nets outperform the baseline hybrid approaches and generalize better to unseen scene geometries than end-to-end methods. Our flexible architecture can be readily adopted in standard multi-resolution image matching pipelines. The code is available at https://github.com/DaliCHEBBI/DeepSimNets. Numéro de notice : C2023-007 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : sans En ligne : https://openaccess.thecvf.com/content/CVPR2023W/EarthVision/html/Chebbi_DeepSim- [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103281 A pipeline for automated processing of Corona KH-4 (1962-1972) stereo imagery / Sajid Ghuffar in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
[article]
Titre : A pipeline for automated processing of Corona KH-4 (1962-1972) stereo imagery Type de document : Article/Communication Auteurs : Sajid Ghuffar, Auteur ; Tobias Bolch, Auteur ; Ewelina Rupnik , Auteur ; Atanu Bhattacharya, Auteur Année de publication : 2022 Article en page(s) : pp Note générale : bibliographie
voir aussi https://research-repository.st-andrews.ac.uk/bitstream/10023/26124/1/Ghuffar_2022_IEEE_TGRS_Pipeline_automated_processing_AAM.pdfLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] compensation par faisceaux
[Termes IGN] géométrie de l'image
[Termes IGN] géométrie épipolaire
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image Corona
[Termes IGN] image panoramique
[Termes IGN] MNS SRTM
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stéréoscopique
[Termes IGN] point d'appuiRésumé : (auteur) The Corona KH-4 reconnaissance satellite missions from 1962-1972 acquired panoramic stereo imagery with high spatial resolution of 1.8-7.5 m. The potential of 800,000+ declassified Corona images has not been leveraged due to the complexities arising from handling of panoramic imaging geometry, film distortions and limited availability of the metadata required for georeferencing of the Corona imagery. This paper presents Corona Stereo Pipeline (CoSP): A pipeline for processing of Corona KH-4 stereo panoramic imagery. CoSP utlizes a deep learning based feature matcher SuperGlue to automatically match features point between Corona KH-4 images and recent satellite imagery to generate Ground Control Points (GCPs). To model the imaging geometry and the scanning motion of the panoramic KH-4 cameras, a rigorous camera model consisting of modified collinearity equations with time dependent exterior orientation parameters is employed. The results show that using the entire frame of the Corona image, bundle adjustment using well-distributed GCPs results in an average standard deviation (SD) of less than 2 pixels. We evaluate fiducial marks on the Corona films and show that pre-processing the Corona images to compensate for film bending improves the accuracy. We further assess a polynomial epipolar resampling method for rectification of Corona stereo images. The distortion pattern of image residuals of GCPs and y-parallax in epipolar resampled images suggest that film distortions due to long term storage as likely cause of systematic deviations. Compared to the SRTM DEM, the Corona DEM computed using CoSP achieved a Normalized Median Absolute Deviation (NMAD) of elevation differences of ? 4m over an area of approx. 4000km2. We show that the proposed pipeline can be applied to sequence of complex scenes involving high relief and glacierized terrain and that the resulting DEMs can be used to compute long term glacier elevation changes over large areas. Numéro de notice : A2022-952 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers ArXiv Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3200151 Date de publication en ligne : 19/08/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3200151 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103286
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 8 (August 2022) . - pp[article]Fusing Sentinel-2 and Landsat 8 satellite images using a model-based method / Jakob Sigurdsson in Remote sensing, vol 14 n° 13 (July-1 2022)
[article]
Titre : Fusing Sentinel-2 and Landsat 8 satellite images using a model-based method Type de document : Article/Communication Auteurs : Jakob Sigurdsson, Auteur ; Sveinn E. Armannsson, Auteur ; Magnus Orn Ulfarsson, Auteur ; Johannes R. Sveinsson, Auteur Année de publication : 2022 Article en page(s) : n° 3224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] limite de résolution géométrique
[Termes IGN] modèle géométrique de prise de vueRésumé : (auteur) The Copernicus Sentinel-2 (S2) constellation comprises of two satellites in a sun-synchronous orbit. The S2 sensors have three spatial resolutions: 10, 20, and 60 m. The Landsat 8 (L8) satellite has sensors that provide seasonal coverage at spatial resolutions of 15, 30, and 60 m. Many remote sensing applications require the spatial resolutions of all data to be at the highest resolution possible, i.e., 10 m for S2. To address this demand, researchers have proposed various methods that exploit the spectral and spatial correlations within multispectral data to sharpen the S2 bands to 10 m. In this study, we combined S2 and L8 data. An S2 sharpening method called Sentinel-2 Sharpening (S2Sharp) was modified to include the 30 m and 15 m spectral bands from L8 and to sharpen all bands (S2 and L8) to the highest resolution of the data, which was 10 m. The method was evaluated using both real and simulated data. Numéro de notice : A2022-573 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : https://doi.org/10.3390/rs14133224 Date de publication en ligne : 05/07/2022 En ligne : https://doi.org/10.3390/rs14133224 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101289
in Remote sensing > vol 14 n° 13 (July-1 2022) . - n° 3224[article]DEM resolution influences on peak flow prediction: a comparison of two different based DEMs through various rescaling techniques / Ali H. Ahmed Suliman in Geocarto international, vol 36 n° 7 ([15/04/2021])
[article]
Titre : DEM resolution influences on peak flow prediction: a comparison of two different based DEMs through various rescaling techniques Type de document : Article/Communication Auteurs : Ali H. Ahmed Suliman, Auteur ; W. Gumindoga, Auteur ; Taymoor A. Awchi, Auteur ; Ayob Katimon, Auteur Année de publication : 2021 Article en page(s) : pp 803 - 819 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Advanced Spaceborne Thermal Emission and Reflection Radiometer
[Termes IGN] analyse comparative
[Termes IGN] bassin hydrographique
[Termes IGN] carte topographique
[Termes IGN] Iran
[Termes IGN] limite de résolution géométrique
[Termes IGN] MNS ASTER
[Termes IGN] modèle numérique de surface
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] ruissellementRésumé : (Auteur) The accurate estimation of terrain characteristics is central in rainfall runoff modelling. In this study, influences of Digital Elevation Models (DEMs) obtained from different sources, resolutions and rescaling techniques are compared for Peak flow prediction in a large-scale watershed by the Topographic driven model (TOPMODEL). The comparison includes graphical representation and statistical assessments using daily time series data. As a result, DEM extracted from contour map (DEM-Con) showed better performance when DEM resolutions increased, but the Advanced Space-borne Thermal Emission and Reflection Radiometer (DEM-Aster) continued to achieve less Relative Error (RE) at low resolution. Moreover, better RE values were found at cubic convolution technique to predict the peaks followed by nearest neighbor and bilinear. In addition, this study indicated that DEM resolution is more sensitive factor for TOPMODEL simulation compared to DEM sources and rescaling techniques for streamflow and peaks prediction. Numéro de notice : A2021-295 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1622599 Date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1622599 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97355
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 803 - 819[article]Amélioration des résolutions spatiale et spectrale d’images satellitaires par réseaux antagonistes / Anaïs Gastineau (2021)
Titre : Amélioration des résolutions spatiale et spectrale d’images satellitaires par réseaux antagonistes Type de document : Thèse/HDR Auteurs : Anaïs Gastineau, Auteur ; Jean-François Aujol, Directeur de thèse ; Yannick Berthoumieu, Directeur de thèse Editeur : Bordeaux : Université de Bordeaux Année de publication : 2021 Importance : 111 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour obtenir le grade de Docteur de l'Université de Bordeaux, spécialité Mathématiques appliquées et calcul scientifiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] limite de résolution géométrique
[Termes IGN] limite de résolution spectrale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] réseau antagoniste génératifIndex. décimale : THESE Thèses et HDR Résumé : (auteur) De plus en plus d'applications, telles que la cartographie ou la classification de l'occupation des sols, nécessitent des images hautes résolutions de la surface de la Terre, mais ces données ne sont pas toujours disponibles. Ainsi, cette thèse porte sur le problème de fusion d'images panchromatiques et multispectrales dans le but d'exploiter au mieux les richesses spatiale et spectrale de chacune de ces données. Pour atteindre cet objectif, cette thèse explore plusieurs aspects liés à l'optimisation du problème ou bien aux architectures considérées.De manière générale, la paramétrisation des réseaux convolutifs est souvent suffisante pour supporter la diversité des problèmes rencontrés. La base de données d'apprentissage est alors considérée comme le vecteur principal de conditionnement au problème traité. Ainsi, dans un contexte de réseaux antagonistes génératifs, nous proposons d'intégrer une modélisation plus fine du problème de "pansharpening" quant à la conception même du réseau. Nous avons également évalué l'impact sur les performances de reconstruction de différentes formulations de la fonctionnelle globale à minimiser tenant compte des spécificités de l'application.Dans un premier temps, nous étudions les différents types de régularisation existant dans un cadre variationnel pour ensuite utiliser cette connaissance afin d'ajouter ce type de contraintes géométrique et spectrale dans la fonction de perte du générateur.Dans un second temps, nous étudions des solutions liées aux architectures considérées pour le générateur et le discriminateur. En effet, nous proposons l'utilisation de plusieurs discriminateurs, chacun répondant à une tâche différente mais complémentaire. Le premier discriminateur se concentre sur la préservation de la résolution spatiale en prenant en compte la luminance et la composante infra-rouge, très informative d'un point de vue de la texture pour la végétation, des images satellites. Le second discriminateur préserve la résolution spectrale en comparant les composantes chromatiques Cb et Cr. Nous étudions également l'ajout de mécanismes d'attention dans le générateur. Nous considérons des mécanismes d'attention spatiale et spectrale pour améliorer la précision de reconstruction du générateur. En effet, ces mécanismes ont pour objectif d'attirer l'attention du générateur sur les parties de l'image les plus pertinentes pour améliorer le résultat.L'ensemble des pistes que nous avons explorées a conduit à des résultats convaincants, à la fois quantitatifs et visuels. En effet, nous avons pu observer une amélioration notable de la précision des reconstructions spatiale et spectrale, contribuant ainsi à résoudre le problème de fusion d'images panchromatique et multispectrale. Note de contenu : 1- Introduction
2- État-de-l’art général
3- Fusion d’images non locale préservant la géométrie basée sur les méthodes variationnelles
4- Reconstruction de la géométrie par l’utilisation de GANs
5- Préservation des résolutions spatiale et spectrale dans un cadre GAN basé multidiscriminateur
6- Reconstructions spatiale et spectrale basées sur l’utilisation de mécanismes d’attention
7- Conclusion : bilan et perspectivesNuméro de notice : 28630 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Mathématiques appliquées et calcul scientifique : Bordeaux : 2021 Organisme de stage : Laboratoire de l'intégration du matériau au système DOI : sans En ligne : https://tel.hal.science/tel-03519655/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99620 PermalinkPermalinkSaint-Quentin-en-Yvelines à 2,5 cm / Anonyme in Géomatique expert, n° 121 (mars - avril 2018)PermalinkPermalinkAutomatic illumination-invariant image-to-geometry registration in outdoor environments / Christian Kehl in Photogrammetric record, vol 32 n° 158 (June - july 2017)PermalinkFusing meter-resolution 4-D InSAR point clouds and optical images for semantic urban infrastructure monitoring / Yuanyuan Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)PermalinkHierarchically exploring the width of spectral bands for urban material classification / Arnaud Le Bris (2017)PermalinkDevelopment of a large-format UAS imaging system with the construction of a one sensor geometry from a multicamera array / Jiann-Yeou Rau in IEEE Transactions on geoscience and remote sensing, vol 54 n° 10 (October 2016)PermalinkProjective texturing uncertain geometry: silhouette-aware box-filtered blending using integral radial images / Mathieu Brédif (2016)PermalinkDEM measurements of a gravel-bed surface using two scales of images / Chi-Kuei Wang in Photogrammetric record, vol 30 n° 152 (December 2015 - February 2016)Permalink