Descripteur
Documents disponibles dans cette catégorie (83)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Random forests with bagging and genetic algorithms coupled with least trimmed squares regression for soil moisture deficit using SMOS satellite soil moisture / Pashrant K. Srivastava in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
[article]
Titre : Random forests with bagging and genetic algorithms coupled with least trimmed squares regression for soil moisture deficit using SMOS satellite soil moisture Type de document : Article/Communication Auteurs : Pashrant K. Srivastava, Auteur ; George P. Petropoulos, Auteur ; Rajendra Prasad, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 507 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme génétique
[Termes IGN] Angleterre
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] ensachage
[Termes IGN] humidité du sol
[Termes IGN] image SMOS
[Termes IGN] régression des moindres carrés partielsRésumé : (auteur) Soil Moisture Deficit (SMD) is a key indicator of soil water content changes and is valuable to a variety of applications, such as weather and climate, natural disasters, agricultural water management, etc. Soil Moisture and Ocean Salinity (SMOS) is a dedicated mission focused on soil moisture retrieval and can be utilized for SMD estimation. In this study, the use of soil moisture derived from SMOS has been provided for the estimation of SMD at a catchment scale. Several approaches for the estimation of SMD are implemented herein, using algorithms such as Random Forests (RF) and Genetic Algorithms coupled with Least Trimmed Squares (GALTS) regression. The results show that for SMD estimation, the RF algorithm performed best as compared to the GALTS, with Root Mean Square Errors (RMSEs) of 0.021 and 0.024, respectively. All in all, our study findings can provide important assistance towards developing the accuracy and applicability of remote sensing-based products for operational use. Numéro de notice : A2021-595 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10080507 Date de publication en ligne : 27/07/2021 En ligne : https://doi.org/10.3390/ijgi10080507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98220
in ISPRS International journal of geo-information > vol 10 n° 8 (August 2021) . - n° 507[article]Automated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)
[article]
Titre : Automated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images Type de document : Article/Communication Auteurs : Luigi Parente, Auteur ; Jim H. Chandler, Auteur ; Neil Dixon, Auteur Année de publication : 2021 Article en page(s) : pp 12 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] algorithme ICP
[Termes IGN] alignement
[Termes IGN] Angleterre
[Termes IGN] détection de changement
[Termes IGN] données multisources
[Termes IGN] données multitemporelles
[Termes IGN] géoréférencement direct
[Termes IGN] image aérienne oblique
[Termes IGN] image captée par drone
[Termes IGN] image oblique
[Termes IGN] image terrestre
[Termes IGN] modèle stéréoscopique
[Termes IGN] modélisation 3D
[Termes IGN] point d'appui
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motionRésumé : (auteur) Accurate alignment of 3D models is critical for valid change‐detection analysis from multitemporal photogrammetric datasets. This paper assesses an automated registration strategy which uses the scale‐invariant feature transform (SIFT) algorithm implemented in modern photogrammetric software. This registration solution, also known as “Time‐SIFT”, was tested at two study sites featuring vertical surfaces, including a sea cliff (~500 m2) and a quarry face (~50 000 m2). Tests demonstrated that the investigated registration strategy can achieve accurate alignments between multitemporal point clouds even when using multisource and multi‐perspective data, captured across widely varying spatial and temporal scales and under a range of weather and illumination conditions. The combination of the Time‐SIFT approach with an ICP algorithm produced moderate improvements in the alignment. Furthermore, the use of an innovative direct georeferencing technique, which used the tracking feature of a robotic total station, allowed for accurate georectification of 3D models. Numéro de notice : A2021-280 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1111/phor.12346 Date de publication en ligne : 06/01/2021 En ligne : https://doi.org/10.1111/phor.12346 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97377
in Photogrammetric record > vol 36 n° 173 (March 2021) . - pp 12 - 35[article]Modelling the effect of landmarks on pedestrian dynamics in urban environments / Gabriele Filomena in Computers, Environment and Urban Systems, vol 86 (March 2021)
[article]
Titre : Modelling the effect of landmarks on pedestrian dynamics in urban environments Type de document : Article/Communication Auteurs : Gabriele Filomena, Auteur ; Judith A. Verstegen, Auteur Année de publication : 2021 Article en page(s) : n° 101573 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] carte cognitive
[Termes IGN] itinéraire piétionnier
[Termes IGN] Londres
[Termes IGN] milieu urbain
[Termes IGN] modèle de simulation
[Termes IGN] modèle orienté agent
[Termes IGN] navigation pédestre
[Termes IGN] point de repèreRésumé : (auteur) Landmarks have been identified as relevant and prominent urban elements, explicitly involved in human navigation processes. Despite the understanding accumulated around their functions, landmarks have not been included in simulation models of pedestrian movement in urban environments. In this paper, we describe an Agent-Based Model (ABM) for pedestrian movement simulation that incorporates the role of on-route and distant landmarks in agents' route choice behaviour. Route choice models with and without landmarks were compared by using four scenarios: road distance minimisation, least cumulative angular change, road distance minimisation and landmarks, least cumulative angular change and landmarks. The city centre of London was used as a case study and a set of GPS trajectories was employed to evaluate the model. The introduction of landmarks led to more heterogeneous patterns that diverge from the minimisation models. Landmark-based navigation brought about high pedestrian volumes along the river (up to 13% of agents) and the boundaries of the parks (around 8% of the agents). Moreover, the model evaluation showed that the results of the landmark-based scenarios were not significantly different from the GPS trajectories in terms of cumulative landmarkness, whereas the other scenarios were. This implies that our proposed landmark-based route choice approach was better able to reproduce human navigation. At the street-segment level, the pedestrian volumes emerging from the scenarios were comparable to the trajectories' volumes in most of the case study area; yet, under- and over-estimation were observed along the banks of the rivers and across green areas (up to +7%, −11% of volumes) in the landmark-based scenarios, and along major roads (up to +11% of volumes) in the least cumulative angular change scenario. While our model could be expanded in relation to the agents' cognitive representation of the environment, e.g. by considering other relevant urban elements and accounting for individual spatial knowledge differences, the inclusion of landmarks in route choice models results in more plausible agents that make use of relevant urban information. Numéro de notice : A2021-118 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.compenvurbsys.2020.101573 Date de publication en ligne : 13/01/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101573 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96943
in Computers, Environment and Urban Systems > vol 86 (March 2021) . - n° 101573[article]
Titre : Learning digital geographies through geographical artificial intelligence Type de document : Thèse/HDR Auteurs : Pengyuan Liu, Auteur ; Stefano de Sabbata, Directeur de thèse ; Yu-Dong Zhang, Directeur de thèse Editeur : Leicester [Royaume-Uni] : University of Leicester Année de publication : 2021 Importance : 199 p. Format : 21 x 30 cm Note générale : bibliographie
A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, Geology and EnvironmentLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse socio-économique
[Termes IGN] apprentissage profond
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] croissance urbaine
[Termes IGN] détection de changement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] données spatiotemporelles
[Termes IGN] géomatique web
[Termes IGN] intelligence artificielle
[Termes IGN] Londres
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau sémantique
[Termes IGN] système d'information urbain
[Termes IGN] zone urbaineIndex. décimale : THESE Thèses et HDR Résumé : (auteur) As the distinction between online and physical spaces rapidly degrades, digital platforms have become an integral component of how people’s everyday experiences are mediated. User-generated content (UGC) shared on such platforms provides insights into how users want to represent their everyday lives, which augments and reinforces our understanding of local communities through time and layers dynamic information across and over the geographic space. Inspired by the development of the newly arisen scientific disciplines within geography: geographical artificial intelligence (GeoAI), this thesis adopts deep learning approaches on graph representations of human dynamics illustrated through geotagged UGC to explore how place representations are augmented and reinforced through users’ spatial experiences by classifying their multimedia activities and identifying the spatial clusters of UGC at the urban scale. Having the place representations described through UGC, this thesis explores how these representations can be used in conjunction with various official spatial statistics to understand and predict the dynamic changes of the socio-economic characteristics of places. The principal contributions of this thesis are: (1) to provide frameworks with higher classification and prediction accuracy but requiring fewer sample data; thus, contributing to an advanced framework to summarise spatial characteristics of places; (2) to show that multimedia content provides rich information regarding places, the use of space, and people’s experience of the landscape; thus, benefiting a better understanding of place representations; (3) to illustrate that the spatial patterns of UGC can be adopted as a valuable proxy to understand urban development and neighbourhood change; (4) to reinforce the concept that Spatial is Special. Spatial processes are commonly spatially autocorrelated. The mainstream of machine learning methods do not explicitly incorporate the spatial or spatio-temporal component to address such a speciality of spatial data. This thesis highlights the importance of explicitly incorporating spatial or spatio-temporal components in geographical analysis models. Note de contenu : 1- Introduction
2- Towards quantitative digital geographies: Concepts, research and implications
3- Data and methods
4- Classification learning through a graph-based semi-supervised approach
5- Location estimation of social media content through a graph-based linkPrediction
6- Urban change modelling with spatial knowledge graphs
7- DiscussionNuméro de notice : 28629 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Thèse étrangère Note de thèse : PhD Thesis: Geology and Environment: Leicester : 2021 DOI : sans En ligne : https://leicester.figshare.com/articles/thesis/Learning_Digital_Geographies_thro [...] Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99618 Semantic enrichment of secondary activities using smart card data and point of interests: a case study in London / Nilufer Sari Aslam in Annals of GIS, vol 27 n° 1 (January 2021)
[article]
Titre : Semantic enrichment of secondary activities using smart card data and point of interests: a case study in London Type de document : Article/Communication Auteurs : Nilufer Sari Aslam, Auteur ; Di Zhu, Auteur ; Tao Cheng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 29 - 41 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] carte à puce
[Termes IGN] collecte de données
[Termes IGN] données socio-économiques
[Termes IGN] données spatiotemporelles
[Termes IGN] enrichissement sémantique
[Termes IGN] loisir
[Termes IGN] Londres
[Termes IGN] méthode heuristique
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] transport urbainRésumé : (auteur) The large volume of data automatically collected by smart card fare systems offers a rich source of information regarding daily human activities with a high resolution of spatial and temporal representation. This provides an opportunity for aiding transport planners and policy-makers to plan transport systems and cities more responsively. However, there are currently limitations when it comes to understanding the secondary activities of individual commuters. Accordingly, in this paper, we propose a framework to detect and infer secondary activities from individuals’ daily travel patterns from the smart card data and reduce the use of conventional surveys. First, we proposed a ‘heuristic secondary activity identification algorithm’, which uses commuters’ primary locations (home & work) and the direction (from & to) information to identify secondary activities for individuals. The algorithm provides a high-level classification of the activity types as before-work, midday and after-work activity patterns of individuals. Second, this classification is semantically enriched using Points of Interests to provide meaningful insights into individuals’ travel purposes and mobility in an urban environment. Lastly, using the transit data of London as a case study, the model is compared with a volunteer survey to demonstrate its effectiveness and offering a cost-effective method to travel demand research. Numéro de notice : A2021-319 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475683.2020.1783359 Date de publication en ligne : 01/08/2020 En ligne : https://doi.org/10.1080/19475683.2020.1783359 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97550
in Annals of GIS > vol 27 n° 1 (January 2021) . - pp 29 - 41[article]The potential of LiDAR and UAV-photogrammetric data analysis to interpret archaeological sites: A case study of Chun Castle in South-West England / Israa Kadhim in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)PermalinkExploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)PermalinkStreets of London: Using Flickr and OpenStreetMap to build an interactive image of the city / Azam Raha Bahrehdar in Computers, Environment and Urban Systems, vol 84 (November 2020)PermalinkCombined InSAR and terrestrial structural monitoring of bridges / Sivasakthy Selvakumaran in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)PermalinkA name‐led approach to profile urban places based on geotagged Twitter data / Juntao Lai in Transactions in GIS, Vol 24 n° 4 (August 2020)PermalinkEstimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data / Rochelle Schneider dos Santos in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)PermalinkStreet-Frontage-Net: urban image classification using deep convolutional neural networks / Stephen Law in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)PermalinkGraph-based matching of points-of-interest from collaborative geo-datasets / Tessio Novack in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)PermalinkExtraction of pluvial flood relevant volunteered geographic information (VGI) by deep learning from user generated texts and photos / Yu Feng in ISPRS International journal of geo-information, vol 7 n° 2 (February 2018)PermalinkPermalink