ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 88Paru le : 01/02/2014 ISBN/ISSN/EAN : 0924-2716 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2014021 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierMultiple-entity based classification of airborne laser scanning data in urban areas / S. Xu in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : Multiple-entity based classification of airborne laser scanning data in urban areas Type de document : Article/Communication Auteurs : S. Xu, Auteur ; M. George Vosselman, Auteur ; Sander J. Oude Elberink, Auteur Année de publication : 2014 Article en page(s) : pp 1 - 15 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse multicritère
[Termes IGN] classificateur paramétrique
[Termes IGN] classification automatique d'objets
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] extraction de la végétation
[Termes IGN] image ALOS-PALSAR
[Termes IGN] milieu urbain
[Termes IGN] test de performanceRésumé : (Auteur) There are two main challenges when it comes to classifying airborne laser scanning (ALS) data. The first challenge is to find suitable attributes to distinguish classes of interest. The second is to define proper entities to calculate the attributes. In most cases, efforts are made to find suitable attributes and less attention is paid to defining an entity. It is our hypothesis that, with the same defined attributes and classifier, accuracy will improve if multiple entities are used for classification. To verify this hypothesis, we propose a multiple-entity based classification method to classify seven classes: ground, water, vegetation, roof, wall, roof element, and undefined object. We also compared the performance of the multiple-entity based method to the single-entity based method. Features have been extracted, in most previous work, from a single entity in ALS data; either from a point or from grouped points. In our method, we extract features from three different entities: points, planar segments, and segments derived by mean shift. Features extracted from these entities are inputted into a four-step classification strategy. After ALS data are filtered into ground and non-ground points. Features generalised from planar segments are used to classify points into the following: water, ground, roof, vegetation, and undefined objects. This is followed by point-wise identification of the walls and roof elements using the contextual information of a building. During the contextual reasoning, the portion of the vegetation extending above the roofs is classified as a roof element. This portion of points is eventually re-segmented by the mean shift method and then reclassified. Five supervised classifiers are applied to classify the features extracted from planar segments and mean shift segments. The experiments demonstrate that a multiple-entity strategy achieves slightly higher overall accuracy and achieves much higher accuracy for vegetation, in comparison to the single-entity strategy (using only point features and planar segment features). Although the multiple-entity method obtains nearly the same overall accuracy as the planar-segment method, the accuracy of vegetation improves by 3.3% with the rule-based classifier. The multiple-entity method obtains much higher overall accuracy and higher accuracy in vegetation in comparison to using only the point-wise classification method for all five classifiers. Meanwhile, we compared the performances of five classifiers. The rule-based method provides the highest overall accuracy at 97.0%. The rule-based method provides over 99.0% accuracy for the ground and roof classes, and a minimum accuracy of 90.0% for the water, vegetation, wall and undefined object classes. Notably, the accuracy of the roof element class is only 70% with the rule-based method, or even lower with other classifiers. Most roof elements have been assigned to the roof class, as shown in the confusion matrix. These erroneous assignments are not fatal errors because both a roof and a roof element are part of a building. In addition, a new feature which indicates the average point space within the planar segment is generalised to distinguish vegetation from other classes. Its performance is compared to the percentage of points with multiple pulse count in planar segments. Using the feature computed with only average point space, the detection rate of vegetation in a rule-based classifier is 85.5%, which is 6% lower than that with pulse count information. Numéro de notice : A2014-080 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.008 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32985
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 1 - 15[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible A GIHS-based spectral preservation fusion method for remote sensing images using edge restored spectral modulation / Xiran Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : A GIHS-based spectral preservation fusion method for remote sensing images using edge restored spectral modulation Type de document : Article/Communication Auteurs : Xiran Zhou, Auteur ; Jun Liu, Auteur ; Lei Cao, Auteur ; Qiming Zhou, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 16 - 27 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] appariement d'histogramme
[Termes IGN] filtrage numérique d'image
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] modulation de fréquence
[Termes IGN] qualité d'image
[Termes IGN] transformation intensité-teinte-saturationRésumé : (Auteur) High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity–hue–saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods. Numéro de notice : A2014-081 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.011 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32986
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 16 - 27[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible Automatic registration of optical imagery with 3D LiDAR data using statistical similarity / Ebadat Ghanbari Parmehr in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : Automatic registration of optical imagery with 3D LiDAR data using statistical similarity Type de document : Article/Communication Auteurs : Ebadat Ghanbari Parmehr, Auteur ; Clive Simpson Fraser, Auteur ; Chunsun Zhang, Auteur ; Joseph Leach, Auteur Année de publication : 2014 Article en page(s) : pp 28 - 40 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] appariement d'images
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image optique
[Termes IGN] semis de points
[Termes IGN] similitude
[Termes IGN] superposition d'images
[Termes IGN] superposition de donnéesRésumé : (Auteur) The development of robust and accurate methods for automatic registration of optical imagery and 3D LiDAR data continues to be a challenge for a variety of applications in photogrammetry, computer vision and remote sensing. This paper proposes a new approach for the registration of optical imagery with LiDAR data based on the theory of Mutual Information (MI), which exploits the statistical dependency between same- and multi-modal datasets to achieve accurate registration. The MI-based similarity measures quantify dependencies between aerial imagery, and both LiDAR intensity data and 3D point cloud data. The needs for specific physical feature correspondences, which are not always attainable in the registration of imagery with 3D point clouds, are avoided. Current methods for registering 2D imagery to 3D point clouds are first reviewed, after which the mutual MI approach is presented. Particular attention is given to adoption of the Normalised Combined Mutual Information (NCMI) approach as a means to produce a similarity measure that exploits the inherently registered LiDAR intensity and point cloud data so as to improve the robustness of registration between optical imagery and LiDAR data. The effectiveness of local versus global similarity measures is also investigated, as are the transformation models involved in the registration process. An experimental program conducted to evaluate MI-based methods for registering aerial imagery to LiDAR data is reported and the results obtained in two areas with differing terrain and land cover, and with aerial imagery of different resolution and LiDAR data with different point density are discussed. These results demonstrate the potential of the MI and especially the CMI methods for registration of imagery and 3D point clouds, and they highlight the feasibility and robustness of the presented MI-based approach to automated registration of multi-sensor, multi-temporal and multi-resolution remote sensing data for a wide range of applications. Numéro de notice : A2014-082 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.015 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32987
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 28 - 40[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible Measuring deformations using SAR interferometry and GPS observables with geodetic accuracy: Application to Tokyo, Japan / Tamer Elgarbawi in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : Measuring deformations using SAR interferometry and GPS observables with geodetic accuracy: Application to Tokyo, Japan Type de document : Article/Communication Auteurs : Tamer Elgarbawi, Auteur ; Masayuki Tamura, Auteur Année de publication : 2014 Article en page(s) : pp 156 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] déformation de la croute terrestre
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] positionnement par GPS
[Termes IGN] précision du positionnement
[Termes IGN] propagation ionosphérique
[Termes IGN] propagation troposphérique
[Termes IGN] séisme
[Termes IGN] Tokyo (Japon)Résumé : (Auteur) This paper presents new methodology for correcting interferometric synthetic aperture radar (InSAR) deformation maps using GPS observables and products. The methodology presents a sequential procedure for correcting the errors presented in InSAR deformation maps such as troposphere delay, ionosphere delay and baseline error. The main target of this research is to measure land deformations with geodetic accuracy using only one L-band interferogram with the aid of GPS observables and products. The proposed methodology was tested on Tokyo bay area which has been affected by the 2011 Tohoku earthquake. The results were verified against deformations detected by GPS stations and geodetic triangulation network showing a standard deviation of 5.6 and 10.5 mm, respectively. Numéro de notice : A2014-083 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.12.005 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.12.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32988
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 156 - 165[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible Estimation of higher chlorophylla concentrations using field spectral measurement and HJ-1A hyperspectral satellite data in Dianshan Lake, China / Liguo Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : Estimation of higher chlorophylla concentrations using field spectral measurement and HJ-1A hyperspectral satellite data in Dianshan Lake, China Type de document : Article/Communication Auteurs : Liguo Zhou, Auteur ; Dar A. Roberts, Auteur ; Weichun Ma, Auteur ; Hao Zhang, Auteur ; Lin Tang, Auteur Année de publication : 2014 Article en page(s) : pp 41 - 47 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] chlorophylle
[Termes IGN] image HJ-1A
[Termes IGN] image hyperspectrale
[Termes IGN] lacRésumé : (Auteur) Based on in situ water sampling and field spectral measurements in Dianshan Lake, a semi-analytical three-band algorithm was used to estimate Chlorophylla (Chla) content in case II waters. The three bands selected to estimate Chla for high concentrations included 653, 691 and 748 nm. An equation, based on the difference in reciprocal reflectance between 653 and 691 nm, multiplied by reflectance at 748 nm as [Rrs-1(653) - Rrs-1(691)] Rrs(748), explained 85.57% of variance in Chla concentration with a root mean square error (RMSE) of Numéro de notice : A2014-084 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.016 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32989
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 41 - 47[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible The potential of the greenness and radiation (GR) model to interpret 8-day gross primary production of vegetation / Chaoyang Wu in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : The potential of the greenness and radiation (GR) model to interpret 8-day gross primary production of vegetation Type de document : Article/Communication Auteurs : Chaoyang Wu, Auteur ; Alemu Gonsamo, Auteur ; Fangmin Zhang, Auteur ; Jing M. Chen, Auteur Année de publication : 2014 Article en page(s) : pp 69 - 79 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arbre sempervirent
[Termes IGN] bilan du carbone
[Termes IGN] croissance des arbres
[Termes IGN] écosystème forestier
[Termes IGN] Enhanced vegetation index
[Termes IGN] forêt de feuillus
[Termes IGN] indice de végétation
[Termes IGN] production primaire brute
[Termes IGN] température au solRésumé : (Auteur) Remote sensing of vegetation gross primary production (GPP) is an important step to analyze terrestrial carbon (C) cycles in response to changing climate. The availability of global networks of C flux measurements provides a valuable opportunity to develop remote sensing based GPP algorithms and test their performances across diverse regions and plant functional types (PFTs). Using 70 global C flux measurements including 24 non-forest (NF), 17 deciduous forest (DF) and 29 evergreen forest (EF), we present the evaluation of an upscaled remote sensing based greenness and radiation (GR) model for GPP estimation. This model is developed using enhanced vegetation index (EVI) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and global course resolution radiation data from the National Center for Environmental Prediction (NCEP). Model calibration was achieved using statistical parameters of both EVI and LST fitted for different PFTs. Our results indicate that compared to the standard MODIS GPP product, the calibrated GR model improved the GPP accuracy by reducing the root mean square errors (RMSE) by 16%, 30% and 11% for the NF, DF and EF sites, respectively. The standard MODIS and GR model intercomparisons at individual sites for GPP estimation also showed that GR model performs better in terms of model accuracy and stability. This evaluation demonstrates the potential use of the GR model in capturing short-term GPP variations in areas lacking ground measurements for most of vegetated ecosystems globally. Numéro de notice : A2014-085 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.10.015 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.10.015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32990
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 69 - 79[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible Mapping the human footprint from satellite measurements in Japan / Fan Yang in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : Mapping the human footprint from satellite measurements in Japan Type de document : Article/Communication Auteurs : Fan Yang, Auteur ; Bunkei Matsushita, Auteur ; Wei Yang, Auteur ; Takehiko Fukushima, Auteur Année de publication : 2014 Article en page(s) : pp 80 - 90 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] agriculture
[Termes IGN] analyse des mélanges temporels
[Termes IGN] changement climatique
[Termes IGN] empreinte écologique
[Termes IGN] indice de végétation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelleRésumé : (Auteur) Due to increasing global urbanization and climate change, the quantification of “human footprints” has become an urgent goal in the fields of biodiversity conservation and regional environment management. A human footprint is defined as the impact of a particular human activity on the Earth’s surface, which can be represented mainly by impervious surfaces (related to industry and urbanization) and cropland (related to agriculture). Here we present a method called sorted temporal mixture analysis with post-classification (STMAP) for mapping impervious surfaces and cropland simultaneously at the subpixel level to fill the demand for precise human footprint information on a national scale. The STMAP method applies a four-endmember sorted temporal mixture analysis to provide the initial fractions of evergreen forests, deciduous forests, cropland, and impervious surfaces as a first step. Endmembers are selected from the sorted temporal profiles of the MODIS-normalized difference vegetation index (NDVI), as guided by a principal component analysis. The yearly maximum land surface temperatures and averaged stable nighttime light are then statistically analyzed to provide the thresholds for post-classification to further separate cropland from deciduous forest and bare land from impervious surface. As the four outputs of STMAP, the fractions of forest, cropland, impervious surfaces and bare land are derived. We used the reference maps of impervious surfaces and cropland obtained from the Landsat/TM and ALOS precise land-use/land-cover map at the subpixel level to evaluate the performance of the proposed method, respectively. Historical satellite images with high spatial resolution were used to further evaluate the cropland results derived with the STMAP method. The results showed that the STMAP method has promising accuracy for estimating impervious surfaces and cropland in Japan. The root mean square errors obtained with the STMAP method were 6.3% for the estimation of impervious surfaces and 9.8% for the estimation of cropland. Our findings can extend the applications of remote sensing technologies in ecological research and environment management on a large scale. Numéro de notice : A2014-086 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.020 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32991
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 80 - 90[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible Structured sparse method for hyperspectral unmixing / Feiyun Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : Structured sparse method for hyperspectral unmixing Type de document : Article/Communication Auteurs : Feiyun Zhu, Auteur ; Yin Wang, Auteur ; Shiming Xiang, Auteur ; Bin Fan, Auteur ; Chunhong Pan, Auteur Année de publication : 2014 Article en page(s) : pp 101 - 118 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation
[Termes IGN] image hyperspectrale
[Termes IGN] matrice creuse
[Termes IGN] programmation par contraintesRésumé : (Auteur) Hyperspectral Unmixing (HU) has received increasing attention in the past decades due to its ability of unveiling information latent in hyperspectral data. Unfortunately, most existing methods fail to take advantage of the spatial information in data. To overcome this limitation, we propose a Structured Sparse regularized Nonnegative Matrix Factorization (SS-NMF) method based on the following two aspects. First, we incorporate a graph Laplacian to encode the manifold structures embedded in the hyperspectral data space. In this way, the highly similar neighboring pixels can be grouped together. Second, the lasso penalty is employed in SS-NMF for the fact that pixels in the same manifold structure are sparsely mixed by a common set of relevant bases. These two factors act as a new structured sparse constraint. With this constraint, our method can learn a compact space, where highly similar pixels are grouped to share correlated sparse representations. Experiments on real hyperspectral data sets with different noise levels demonstrate that our method outperforms the state-of-the-art methods significantly. Numéro de notice : A2014-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.014 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32992
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 101 - 118[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible Automated parameterisation for multi-scale image segmentation on multiple layers / L. Drăguț in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : Automated parameterisation for multi-scale image segmentation on multiple layers Type de document : Article/Communication Auteurs : L. Drăguț, Auteur ; O. Csillik, Auteur ; C. Eisank, Auteur ; D. Tiede, Auteur Année de publication : 2014 Article en page(s) : pp 119 - 127 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] eCognition
[Termes IGN] facteur d'échelle
[Termes IGN] résolution multiple
[Termes IGN] segmentation d'image
[Termes IGN] varianceRésumé : (Auteur) We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multi-resolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis. Numéro de notice : A2014-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.018 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32993
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 119 - 127[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: Analysis and comparison / Wajahat Kazmi in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: Analysis and comparison Type de document : Article/Communication Auteurs : Wajahat Kazmi, Auteur ; Sergi Foix, Auteur ; Guillem Alenya, Auteur ; Hans Jorgen Andersen, Auteur Année de publication : 2014 Article en page(s) : pp 128 - 146 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] analyse comparative
[Termes IGN] feuillu
[Termes IGN] prise de vue aérienne
[Termes IGN] qualité des données
[Termes IGN] végétationRésumé : (Auteur) In this article we analyze the response of Time-of-Flight (ToF) cameras (active sensors) for close range imaging under three different illumination conditions and compare the results with stereo vision (passive) sensors. ToF cameras are sensitive to ambient light and have low resolution but deliver high frame rate accurate depth data under suitable conditions. We introduce metrics for performance evaluation over a small region of interest. Based on these metrics, we analyze and compare depth imaging of leaf under indoor (room) and outdoor (shadow and sunlight) conditions by varying exposure times of the sensors. Performance of three different ToF cameras (PMD CamBoard, PMD CamCube and SwissRanger SR4000) is compared against selected stereo-correspondence algorithms (local correlation and graph cuts). PMD CamCube has better cancelation of sunlight, followed by CamBoard, while SwissRanger SR4000 performs poorly under sunlight. Stereo vision is comparatively more robust to ambient illumination and provides high resolution depth data but is constrained by texture of the object along with computational efficiency. Graph cut based stereo correspondence algorithm can better retrieve the shape of the leaves but is computationally much more expensive as compared to local correlation. Finally, we propose a method to increase the dynamic range of ToF cameras for a scene involving both shadow and sunlight exposures at the same time by taking advantage of camera flags (PMD) or confidence matrix (SwissRanger). Numéro de notice : A2014-089 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.012 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32994
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 128 - 146[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm / Abduwasit Ghulam in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm Type de document : Article/Communication Auteurs : Abduwasit Ghulam, Auteur ; Ingrid Porton, Auteur ; Karen Freeman, Auteur Année de publication : 2014 Article en page(s) : pp 174 - 192 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] arbre de décision
[Termes IGN] espèce exotique envahissante
[Termes IGN] extraction de la végétation
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forêt équatoriale
[Termes IGN] hauteur des arbres
[Termes IGN] image optique
[Termes IGN] image radar
[Termes IGN] intégration de données
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Madagascar
[Termes IGN] polarimétrie radar
[Termes IGN] réserve naturelle
[Termes IGN] sous-boisRésumé : (Auteur) In this paper, we propose a decision tree algorithm to characterize spatial extent and spectral features of invasive plant species (i.e., guava, Madagascar cardamom, and Molucca raspberry) in tropical rainforests by integrating datasets from passive and active remote sensing sensors. The decision tree algorithm is based on a number of input variables including matching score and infeasibility images from Mixture Tuned Matched Filtering (MTMF), land-cover maps, tree height information derived from high resolution stereo imagery, polarimetric feature images, Radar Forest Degradation Index (RFDI), polarimetric and InSAR coherence and phase difference images. Spatial distributions of the study organisms are mapped using pixel-based Winner-Takes-All (WTA) algorithm, object oriented feature extraction, spectral unmixing, and compared with the newly developed decision tree approach. Our results show that the InSAR phase difference and PolInSAR HH–VV coherence images of L-band PALSAR data are the most important variables following the MTMF outputs in mapping subcanopy invasive plant species in tropical rainforest. We also show that the three types of invasive plants alone occupy about 17.6% of the Betampona Nature Reserve (BNR) while mixed forest, shrubland and grassland areas are summed to 11.9% of the reserve. This work presents the first systematic attempt to evaluate forest degradation, habitat quality and invasive plant statistics in the BNR, and provides significant insights as to management strategies for the control of invasive plants and conversation in the reserve. Numéro de notice : A2014-090 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.12.007 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.12.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32995
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 174 - 192[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible