ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 89Paru le : 01/03/2014 ISBN/ISSN/EAN : 0924-2716 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2014031 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierAn improved dark object method to retrieve 500 m-resolution AOT (Aerosol Optical Thickness) image from MODIS data: A case study in the Pearl River Delta area, China / Lili Li in ISPRS Journal of photogrammetry and remote sensing, vol 89 (March 2014)
[article]
Titre : An improved dark object method to retrieve 500 m-resolution AOT (Aerosol Optical Thickness) image from MODIS data: A case study in the Pearl River Delta area, China Type de document : Article/Communication Auteurs : Lili Li, Auteur ; Jingxue Yang, Auteur ; Yupeng Wang, Auteur Année de publication : 2014 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aérosol
[Termes IGN] bande spectrale
[Termes IGN] delta
[Termes IGN] delta de la rivière des perles
[Termes IGN] densité de la végétation
[Termes IGN] flore locale
[Termes IGN] image à moyenne résolution
[Termes IGN] image Aqua-MODIS
[Termes IGN] Kouangtoung (Chine)
[Termes IGN] réflectance de surfaceRésumé : (Auteur) This paper presents an improved Dark Dense Vegetation (DDV) method for retrieving 500 m-resolution aerosol optical depth (AOT) based on MOD04-C005 arithmetic with the Moderate Resolution Imaging Spectroradiometer (MODIS) from the National Aeronautics and Space Administration (NASA). The improvements include change of the movement pattern of retrieval window, selection of a more suitable aerosol type, and storage of the look-up table. The method is then applied to obtain the AOT over the Pearl River Delta region (PRD). By comparing the results with the co-temporal ground sunphotometer observations in 2010, the correlation coefficient is found to be 0.794 with RMSE 0.139 and their variations remain consistent. Contrasts between model values in 2008 and MODIS AOT products in the same date also reveal a high accuracy of the improved DDV method. We also performed sensitivity tests to analyze the impacts of several parameters on apparent reflectance at different bands, and the results show that apparent reflectance is much more sensitive to surface reflectance and AOT than to elevation. Numéro de notice : A2014-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.12.008 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.12.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33025
in ISPRS Journal of photogrammetry and remote sensing > vol 89 (March 2014) . - pp 1 - 12[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014031 RAB Revue Centre de documentation En réserve L003 Disponible Automated geometric correction of multispectral images from high resolution CCD Camera (HRCC) on-board CBERS-2 and CBERS-2B / Chabitha Devarj in ISPRS Journal of photogrammetry and remote sensing, vol 89 (March 2014)
[article]
Titre : Automated geometric correction of multispectral images from high resolution CCD Camera (HRCC) on-board CBERS-2 and CBERS-2B Type de document : Article/Communication Auteurs : Chabitha Devarj, Auteur ; Chintan A. Shah, Auteur Année de publication : 2014 Article en page(s) : pp 13 - 24 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] chambre DTC
[Termes IGN] correction géométrique
[Termes IGN] géoréférencement direct
[Termes IGN] image à haute résolution
[Termes IGN] image CBERS
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] orthorectificationRésumé : (Auteur) China–Brazil Earth Resource Satellite (CBERS) imagery is identified as one of the potential data sources for monitoring Earth surface dynamics in the event of a Landsat data gap. Currently available multispectral images from the High Resolution CCD (Charge Coupled Device) Camera (HRCC) on-board CBERS satellites (CBERS-2 and CBERS-2B) are not precisely geo-referenced and orthorectified. The geometric accuracy of the HRCC multispectral image product is found to be within 2–11 km. The use of CBERS-HRCC multispectral images to monitor Earth surface dynamics therefore necessitates accurate geometric correction of these images. This paper presents an automated method for geo-referencing and orthorectifying the multispectral images from the HRCC imager on-board CBERS satellites. Landsat Thematic Mapper (TM) Level 1T (L1T) imagery provided by the U.S. Geological Survey (USGS) is employed as reference for geometric correction. The proposed method introduces geometric distortions in the reference image prior to registering it with the CBERS-HRCC image. The performance of the geometric correction method was quantitatively evaluated using a total of 100 images acquired over the Andes Mountains and the Amazon rainforest, two areas in South America representing vastly different landscapes. The geometrically corrected HRCC images have an average geometric accuracy of 17.04 m (CBERS-2) and 16.34 m (CBERS-2B). While the applicability of the method for attaining sub-pixel geometric accuracy is demonstrated here using selected images, it has potential for accurate geometric correction of the entire archive of CBERS-HRCC multispectral images. Numéro de notice : A2014-121 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.12.012 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.12.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33026
in ISPRS Journal of photogrammetry and remote sensing > vol 89 (March 2014) . - pp 13 - 24[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014031 RAB Revue Centre de documentation En réserve L003 Disponible UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification / Weiwei Sun in ISPRS Journal of photogrammetry and remote sensing, vol 89 (March 2014)
[article]
Titre : UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification Type de document : Article/Communication Auteurs : Weiwei Sun, Auteur ; Avner Halevy, Auteur ; John J. Benedetto, Auteur ; Chun Liu, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 25 - 36 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte isoplèthe
[Termes IGN] classification barycentrique
[Termes IGN] graphe
[Termes IGN] image hyperspectrale
[Termes IGN] isoligne
[Termes IGN] point de repère
[Termes IGN] précision de la classification
[Termes IGN] réduction géométrique
[Termes IGN] valeur propreRésumé : (Auteur) The paper proposes an upgraded landmark-Isometric mapping (UL-Isomap) method to solve the two problems of landmark selection and computational complexity in dimensionality reduction using Landmark Isometric mapping (LIsomap) for hyperspectral imagery (HSI) classification. First, the vector quantization method is introduced to select proper landmarks for HSI data. The approach considers the variations in local density of pixels in the spectral space. It locates the unique landmarks representing the geometric structures of HSI data. Then, random projections are used to reduce the bands of HSI data. After that, the new method incorporates the Recursive Lanczos Bisection (RLB) algorithm to construct the fast approximate k-nearest neighbor graph. The RLB algorithm accompanied with random projections improves the speed of neighbor searching in UL-Isomap. After constructing the geodesic distance graph between landmarks and all pixels, the method uses a fast randomized low-rank approximate method to speed up the eigenvalue decomposition of the inner-product matrix in multidimensional scaling. Manifold coordinates of landmarks are then computed. Manifold coordinates of non-landmarks are computed through the pseudo inverse transformation of landmark coordinates. Five experiments on two different HSI datasets are run to test the new UL-Isomap method. Experimental results show that UL-Isomap surpasses LIsomap, both in the overall classification accuracy (OCA) and in computational speed, with a speed over 5 times faster. Moreover, the UL-Isomap method, when compared against the Isometric mapping (Isomap) method, obtains only slightly lower OCAs. Numéro de notice : A2014-122 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.12.003 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.12.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33027
in ISPRS Journal of photogrammetry and remote sensing > vol 89 (March 2014) . - pp 25 - 36[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014031 RAB Revue Centre de documentation En réserve L003 Disponible Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding / Junwei Han in ISPRS Journal of photogrammetry and remote sensing, vol 89 (March 2014)
[article]
Titre : Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding Type de document : Article/Communication Auteurs : Junwei Han, Auteur ; Peicheng Zhou, Auteur ; Dingwen Zhang, Auteur ; Gong Cheng, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 37 - 48 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage automatique
[Termes IGN] détection de cible
[Termes IGN] données localisées
[Termes IGN] image optique
[Termes IGN] matrice d'information de Fischer
[Termes IGN] modèle de simulation
[Termes IGN] reliefRésumé : (Auteur) Automatic detection of geospatial targets in cluttered scenes is a profound challenge in the field of aerial and satellite image analysis. In this paper, we propose a novel practical framework enabling efficient and simultaneous detection of multi-class geospatial targets in remote sensing images (RSI) by the integration of visual saliency modeling and the discriminative learning of sparse coding. At first, a computational saliency prediction model is built via learning a direct mapping from a variety of visual features to a ground truth set of salient objects in geospatial images manually annotated by experts. The output of this model can predict a small set of target candidate areas. Afterwards, in contrast with typical models that are trained independently for each class of targets, we train a multi-class object detector that can simultaneously localize multiple targets from multiple classes by using discriminative sparse coding. The Fisher discrimination criterion is incorporated into the learning of a dictionary, which leads to a set of discriminative sparse coding coefficients having small within-class scatter and big between-class scatter. Multi-class classification can be therefore achieved by the reconstruction error and discriminative coding coefficients. Finally, the trained multi-class object detector is applied to those target candidate areas instead of the entire image in order to classify them into various categories of target, which can significantly reduce the cost of traditional exhaustive search. Comprehensive evaluations on a satellite RSI database and comparisons with a number of state-of-the-art approaches demonstrate the effectiveness and efficiency of the proposed work. Numéro de notice : A2014-123 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.12.011 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.12.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33028
in ISPRS Journal of photogrammetry and remote sensing > vol 89 (March 2014) . - pp 37 - 48[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014031 RAB Revue Centre de documentation En réserve L003 Disponible Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data / Gaia Vaglio Laurin in ISPRS Journal of photogrammetry and remote sensing, vol 89 (March 2014)
[article]
Titre : Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data Type de document : Article/Communication Auteurs : Gaia Vaglio Laurin, Auteur ; Qi Chen, Auteur ; Jeremy A. Lindsell, Auteur ; David A. Coomes, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 49 - 58 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Afrique tropicale
[Termes IGN] bilan du carbone
[Termes IGN] biomasse
[Termes IGN] données lidar
[Termes IGN] forêt tropicale
[Termes IGN] image hyperspectrale
[Termes IGN] modélisation de la forêtRésumé : (Auteur) The estimation of above ground biomass in forests is critical for carbon cycle modeling and climate change mitigation programs. Small footprint lidar provides accurate biomass estimates, but its application in tropical forests has been limited, particularly in Africa. Hyperspectral data record canopy spectral information that is potentially related to forest biomass. To assess lidar ability to retrieve biomass in an African forest and the usefulness of including hyperspectral information, we modeled biomass using small footprint lidar metrics as well as airborne hyperspectral bands and derived vegetation indexes. Partial Least Square Regression (PLSR) was adopted to cope with multiple inputs and multicollinearity issues; the Variable of Importance in the Projection was calculated to evaluate importance of individual predictors for biomass. Our findings showed that the integration of hyperspectral bands (R2 = 0.70) improved the model based on lidar alone (R2 = 0.64), this encouraging result call for additional research to clarify the possible role of hyperspectral data in tropical regions. Replacing the hyperspectral bands with vegetation indexes resulted in a smaller improvement (R2 = 0.67). Hyperspectral bands had limited predictive power (R2 = 0.36) when used alone. This analysis proves the efficiency of using PLSR with small-footprint lidar and high resolution hyperspectral data in tropical forests for biomass estimation. Results also suggest that high quality ground truth data is crucial for lidar-based AGB estimates in tropical African forests, especially if airborne lidar is used as an intermediate step of upscaling field-measured AGB to a larger area. Numéro de notice : A2014-124 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.01.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.01.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33029
in ISPRS Journal of photogrammetry and remote sensing > vol 89 (March 2014) . - pp 49 - 58[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014031 RAB Revue Centre de documentation En réserve L003 Disponible Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation / Matthew Maimaitiyiming in ISPRS Journal of photogrammetry and remote sensing, vol 89 (March 2014)
[article]
Titre : Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation Type de document : Article/Communication Auteurs : Matthew Maimaitiyiming, Auteur ; Abduwasit Ghulam, Auteur ; Tashpolat Tiyip, Auteur ; Filiberto Pla, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 59 - 66 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] développement durable
[Termes IGN] espace vert
[Termes IGN] image Landsat-TM
[Termes IGN] image thermique
[Termes IGN] milieu urbain
[Termes IGN] température de surfaceRésumé : (Auteur) The urban heat island (UHI) refers to the phenomenon of higher atmospheric and surface temperatures occurring in urban areas than in the surrounding rural areas. Mitigation of the UHI effects via the configuration of green spaces and sustainable design of urban environments has become an issue of increasing concern under changing climate. In this paper, the effects of the composition and configuration of green space on land surface temperatures (LST) were explored using landscape metrics including percentage of landscape (PLAND), edge density (ED) and patch density (PD). An oasis city of Aksu in Northwestern China was used as a case study. The metrics were calculated by moving window method based on a green space map derived from Landsat Thematic Mapper (TM) imagery, and LST data were retrieved from Landsat TM thermal band. A normalized mutual information measure was employed to investigate the relationship between LST and the spatial pattern of green space. The results showed that while the PLAND is the most important variable that elicits LST dynamics, spatial configuration of green space also has significant effect on LST. Though, the highest normalized mutual information measure was with the PLAND (0.71), it was found that the ED and PD combination is the most deterministic factors of LST than the unique effects of a single variable or the joint effects of PLAND and PD or PLAND and ED. Normalized mutual information measure estimations between LST and PLAND and ED, PLAND and PD and ED and PD were 0.7679, 0.7650 and 0.7832, respectively. A combination of the three factors PLAND, PD and ED explained much of the variance of LST with a normalized mutual information measure of 0.8694. Results from this study can expand our understanding of the relationship between LST and street trees and vegetation, and provide insights for sustainable urban planning and management under changing climate. Numéro de notice : A2014-125 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.12.010 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.12.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33030
in ISPRS Journal of photogrammetry and remote sensing > vol 89 (March 2014) . - pp 59 - 66[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014031 RAB Revue Centre de documentation En réserve L003 Disponible