Descripteur
Termes IGN > télédétection > télédétection électromagnétique > thermographie > image thermique
image thermiqueSynonyme(s)Image infrarouge thermique enregistrement thermographiqueVoir aussi |
Documents disponibles dans cette catégorie (147)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Feux de forêt : un drone traque les risques de reprise / Nathalie Da Cruz in Géomètre, n° 2205 (septembre 2022)
[article]
Titre : Feux de forêt : un drone traque les risques de reprise Type de document : Article/Communication Auteurs : Nathalie Da Cruz, Auteur Année de publication : 2022 Article en page(s) : pp 16 - 18 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] aide à la localisation
[Termes IGN] Gironde (33)
[Termes IGN] image captée par drone
[Termes IGN] image thermique
[Termes IGN] incendie de forêt
[Termes IGN] télédétection aérienne
[Termes IGN] température au solRésumé : (Auteur) Lors des incendies en Gironde, cet été, le cabinet de géomètres-experts Parallèle 45 a proposé aux autorités l’utilisation de son drone avec caméra thermique pour repérer les fumerons. Une aide précieuse appréciée des élus locaux et des sapeurs-pompiers. Numéro de notice : A2022-529 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/09/2022 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101491
in Géomètre > n° 2205 (septembre 2022) . - pp 16 - 18[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2022091 RAB Revue Centre de documentation En réserve L003 Disponible Vegetation cover mapping from RGB webcam time series for land surface emissivity retrieval in high mountain areas / Benedikt Hiebl in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
[article]
Titre : Vegetation cover mapping from RGB webcam time series for land surface emissivity retrieval in high mountain areas Type de document : Article/Communication Auteurs : Benedikt Hiebl, Auteur ; Andreas Mayr, Auteur ; Andreas Kollert, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 367 - 374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte de la végétation
[Termes IGN] données de terrain
[Termes IGN] emissivité
[Termes IGN] flore alpine
[Termes IGN] image RVB
[Termes IGN] image thermique
[Termes IGN] modèle numérique de surface
[Termes IGN] montagne
[Termes IGN] série temporelle
[Termes IGN] température au sol
[Termes IGN] variation saisonnièreRésumé : (auteur) Land Surface Temperature (LST) products from thermal infrared imaging rely on information about the spatial distribution of Land Surface Emissivity (LSE). For portable, broadband thermal cameras for drone- or ground-based measurements with camera to object distances up to a few kilometres and with meter-scale resolution, threshold-based retrieval of LSE from Fractional green Vegetation Cover (FVC) can be used. As seasonal changes in vegetation LSE over the year cannot be accounted for by single satellite images or aerial orthophotos, this study evaluates an approach for FVC retrieval via permanently installed RGB webcams and derived Excess Green vegetation index (ExG) time series at a high-mountain test site in the European Alps. Daily ExG values were derived from the imagery of 27 days between 12/07/2021 and 30/10/2021 and projected to a 0.5 m Digital Surface Model (DSM). FVC reference data from 765 in-situ vegetation plots were used to assess the relationship between ExG and the vegetation cover and to determine the thresholds of ExG for no vegetation cover and full vegetation cover. Despite the bad correlation between ExG and in-field FVC with an R² score of 0.15, an approach using a well-tested orthophoto-retrieved NDVI for FVC retrieval performs just slightly better. The comparison of the remotely sensed data and the field measurements therefore remains complex. Time series analysis of both ExG and FVC for highly vegetated areas showed a significant decrease from summer to autumn, which reflects the seasonal changes of LSE for senescent vegetation. Calculated emissivities for vegetated pixels ranged from the minimum of 0.95 to the maximum of 0.985 over the season, while emissivity values for less vegetated pixels stayed constant during the season. The results of this study will be used as input to a correction model for remote LST measurements in the context of micro-scale investigations of the thermal niche of Alpine flora. Numéro de notice : A2022-428 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-367-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-367-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100735
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 367 - 374[article]Apport de la télédétection et des variables auxiliaires dans l'étude de l'évolution des périodes de sécheresse / Nesrine Farhani (2022)
Titre : Apport de la télédétection et des variables auxiliaires dans l'étude de l'évolution des périodes de sécheresse Type de document : Thèse/HDR Auteurs : Nesrine Farhani, Auteur ; Gilles Boulet, Directeur de thèse ; Zohra Lili-Chabaane, Directeur de thèse Editeur : Toulouse : Université de Toulouse 3 Paul Sabatier Année de publication : 2022 Importance : 194 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université Toulouse délivré par l'Université Toulouse 3 - Paul Sabatier, spécialité Surfaces et Interfaces Continentales, HydrologieLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] capteur actif
[Termes IGN] capteur passif
[Termes IGN] données météorologiques
[Termes IGN] évapotranspiration
[Termes IGN] gestion de l'eau
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] indice de stress
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] sécheresse
[Termes IGN] stress hydrique
[Termes IGN] température de surface
[Termes IGN] Tunisie
[Termes IGN] zone arideIndex. décimale : THESE Thèses et HDR Résumé : (auteur) La surveillance des sécheresses dans les régions arides et semi-arides est cruciale car ses conséquences pour l'agriculture peuvent être dramatiques. Afin d'aider les décideurs à établir de bonnes pratiques de gestion de la ressource en eau et d'atténuation du risque des sécheresses, nous nous intéressons à l'analyse des indices de stress hydriques. À cette fin, un modèle de bilan d'énergie à double source permet, en combinant de l'information satellitaire (température de surface, NDVI, albédo et LAI) et de l'information météorologique (température de l'air, humidité relative de l'air, vitesse du vent et rayonnement global), de simuler l'évapotranspiration ainsi que le stress hydrique. Ces deux variables doivent être fournies d'une façon continue et sur une longue période temporelle pour une analyse adéquate des périodes de sécheresses. Or, les réseaux d'observations météorologiques sont parfois insuffisants (faible densité des sites instrumentés et périodes d'observation courtes et souvent non-concomitantes). Notre premier objectif est alors de simuler des scénarios de différentes variables climatiques afin de les prolonger. Nous avons adapté un générateur de conditions météorologiques "MetGen" qui permet de combler les lacunes présentes sur une période d'observation et de projeter des scénarios sur une période distincte de la période d'observation. MetGen exploite parmi ses co-variables, les données de réanalyses qui fournissent des variables à faible résolution spatiale (environ 31 km), comme source d'information importante. Nous comparons cette méthode avec des méthodes de correction de biais (univariée et multivariée) qui exploitent également les données de réanalyses. Cette approche statistique est validée selon deux volets : l'évaluation de la capacité (1) à bien reproduire les variables météorologiques et (2) à bien restituer les variables de bilan d'énergie. Les analyses, menées avec les données des stations météorologiques du système d'observations, ont permis de valider MetGen sur une période de validation (2011-2016). Nous avons utilisé alors cette méthode afin de simuler des données climatiques sur toute la période d'étude (2000-2019). Cette série ainsi que celle provenant des réanalyses brutes sont utilisées comme forçages climatiques du modèle d'énergie à double source SPARSE, afin de simuler deux indices de stress thermiques SI(SWG) et SI(ERA5) issus du générateur et des réanalyses ERA5 respectivement, à une échelle kilométrique. Ces deux indices sensibles aux anomalies de température de surface, sont comparés avec d'autres indices standardisés issus de différentes longueurs d'onde : le NDVI issu du visible/proche infrarouge, SWI du micro-onde et un indice standardisé de précipitations UPI qui est utilisé comme une référence pour notre analyse. Cette analyse est effectuée en termes de pertinence, de cohérence et de précocité pour la détection d'une sécheresse agronomique. Les deux indices thermiques ont montré des bonnes performances pour la détection du stress, notamment SI(SWG) qui a montré plus de précision et de capacité à détecter le stress hydrique d'une façon précoce. Ces analyses et tous ces approches statistiques sont effectuées au niveau du bassin versant de Merguellil situé au centre de la Tunisie et qui présente un modèle typique des régions semi-arides. Note de contenu : 1- Introduction
2- Partie A
2.1 Etat de l'art
2.2 Matériel et méthodes
2.3 Conclusion partielle et synthèse
3- Partie B
3.1 Introduction
3.2 Développement de la méthode statistique
3.3 Résultats complémentaires
3.4 Conclusion partielle et synthèse
4- Partie C
4.1 Introduction
4.2 Interpolation journalière de l’évapotranspiration
4.3 Indice de sécheresse
4.4 Utilisation de l’indice thermique pour le stress de la végétation
4.5 Comparaison SI et ESI
4.6 Conclusion partielle et synthèse
Conclusion et perspectivesNuméro de notice : 28880 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Surfaces et Interfaces Continentales, Hydrologie : Toulouse 3 : 2022 Organisme de stage : CESBIO DOI : sans En ligne : http://www.theses.fr/2022TOU30022 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101529 Potentialité de la télédétection thermique pour la modélisation climatique en milieu viticole / Gwenaël Morin (2022)
Titre : Potentialité de la télédétection thermique pour la modélisation climatique en milieu viticole Type de document : Thèse/HDR Auteurs : Gwenaël Morin, Auteur ; Hervé Quénol, Directeur de thèse ; Marwan Katurji, Directeur de thèse Editeur : Rennes : Université de Rennes 2 Année de publication : 2022 Importance : 276 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université Rennes 2, spécialité GéographieLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de groupement
[Termes IGN] changement climatique
[Termes IGN] climatologie
[Termes IGN] Gironde (33)
[Termes IGN] image thermique
[Termes IGN] modèle de simulation
[Termes IGN] niveau local
[Termes IGN] série temporelle
[Termes IGN] température de surface
[Termes IGN] viticultureIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Les stratégies d’adaptation au changement climatique sont définies à l’échelle des vignobles. L’application d’une méthode de modélisation climatique locale basée sur le lien statistique entre températures et topographie, nécessite des réseaux de mesures coûteux et l’acquisition de données durant plusieurs années. Dans ce contexte, l’utilisation de l’imagerie thermique à haute résolution temporelle permettrait de pallier cette contrainte. L’objectif de cette thèse est d’évaluer les potentialités des images satellites thermiques en modélisation climatique aux échelles locale et régionale. Pour cela, la variabilité spatiale des températures en milieu viticole a été analysée à partir des températures de surface dérivées de la télédétection et parallèlement, des températures de l'air issues des réseaux de mesure. A l’échelle locale, une méthode de descente d’échelle statistique à partir de prédicteurs topographiques a été appliquée aux températures de surface journalière et hebdomadaires (1000m) et ont été comparées aux spatialisations des températures de l’air journalières (capteurs). Sur le site de Saint-Emilion-Pomerol, ces modélisations ont été évaluées à plusieurs résolutions spatiales. A l’échelle régionale, une méthode d’identification de structures thermiques a été développée afin de caractériser la variabilité des températures de surface modélisées sur le département de la Gironde. Les résultats ont mis en évidence les limites des températures de surface MODIS liées à la résolution spatiale initiale et leur potentiel de caractérisation de la variabilité thermique à l’échelle régionale. Note de contenu : Introduction générale
I- apport de la télédétection thermique en modélisation climatique : état des lieux
II- Construction et évaluation des séries temporelles en suivi climatique
III- Echelle locale : modélisation climatique à partir de températures de surface par descente d'échelle spatiale
IV- Echelle régionale : apport de la descente d'échelle pour l'identification de structures thermiques
Conclusion générale et perspectivesNuméro de notice : 24047 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Géographie : Rennes 2 : 2022 Organisme de stage : Laboratoire Littoral, Environnement, Télédétection, Géomatique DOI : sans En ligne : https://tel.hal.science/tel-03814215 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101919 Downscaling MODIS spectral bands using deep learning / Rohit Mukherjee in GIScience and remote sensing, vol 58 n° 8 (2021)
[article]
Titre : Downscaling MODIS spectral bands using deep learning Type de document : Article/Communication Auteurs : Rohit Mukherjee, Auteur ; Desheng Liu, Auteur Année de publication : 2021 Article en page(s) : pp 1300 - 1315 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bande spectrale
[Termes IGN] image à basse résolution
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réduction d'échelle
[Termes IGN] résolution multipleRésumé : (auteur) MODIS sensors are widely used in a broad range of environmental studies, many of which involve joint analysis of multiple MODIS spectral bands acquired at disparate spatial resolutions. To extract land surface information from multi-resolution MODIS spectral bands, existing studies often downscale lower resolution (LR) bands to match the higher resolution (HR) bands based on simple interpolation or more advanced statistical modeling. Statistical downscaling methods rely on the functional relationship between the LR spectral bands and HR spatial information, which may vary across different land surface types, making statistical downscaling methods less robust. In this paper, we propose an alternative approach based on deep learning to downscale 500 m and 1000 m spectral bands of MODIS to 250 m without additional spatial information. We employ a superresolution architecture based on an encoder decoder network. This deep learning-based method uses a custom loss function and a self-attention layer to preserve local and global spatial relationships of the predictions. We compare our approach with a statistical method specifically developed for downscaling MODIS spectral bands, an interpolation method widely used for downscaling multi-resolution spectral bands, and a deep learning superresolution architecture previously used for downscaling satellite imagery. Results show that our deep learning method outperforms on almost all spectral bands both quantitatively and qualitatively. In particular, our deep learning-based method performs very well on the thermal bands due to the larger scale difference between the input and target resolution. This study demonstrates that our proposed deep learning-based downscaling method can maintain the spatial and spectral fidelity of satellite images and contribute to the integration and enhancement of multi-resolution satellite imagery. Numéro de notice : A2021-124 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2021.1984129 Date de publication en ligne : 26/10/2021 En ligne : https://doi.org/10.1080/15481603.2021.1984129 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99309
in GIScience and remote sensing > vol 58 n° 8 (2021) . - pp 1300 - 1315[article]Spatiotemporal analysis of urban heat island intensification in the city of Minneapolis-St. Paul and Chicago metropolitan areas using Landsat data from 1984 to 2016 / Mbongowo J. Mbuh in Geocarto international, vol 36 n° 14 ([01/08/2021])PermalinkComNet: combinational neural network for object detection in UAV-borne thermal images / Minglei Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)PermalinkAnomalous variations of air temperature prior to earthquakes / Irfan Mahmood in Geocarto international, vol 36 n° 12 ([01/07/2021])PermalinkDetecting high-temperature anomalies from Sentinel-2 MSI images / Yongxue Liu in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)PermalinkMapping sandy land using the new sand differential emissivity index from thermal infrared emissivity data / Shanshan Chen in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)PermalinkDes pixels et des peuples / Laurent Polidori in Géomètre, n° 2190 (avril 2021)PermalinkApplication of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring / Gopal Krishna in Geocarto international, vol 36 n° 5 ([15/03/2021])PermalinkActivity recognition in residential spaces with Internet of things devices and thermal imaging / Kshirasagar Naik in Sensors, vol 21 n° 3 (February 2021)PermalinkDétection d’ouvertures par segmentation sémantique de nuages de points 3D : apport de l’apprentissage profond / Camille Lhenry (2021)PermalinkRemote sensing and GIS / Basudeb Bhatta (2021)Permalink