Descripteur
Documents disponibles dans cette catégorie (4613)


Etendre la recherche sur niveau(x) vers le bas
Titre : Global Open Data Assessment Type de document : Mémoire Auteurs : Mathis Rouillard, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2024 Importance : 48 p. Format : 21 x 30 cm Note générale : bibliographie
Rapport de fin d'étude, cycle des ING3, spécialisé TSILangues : Anglais (eng) Descripteur : [Termes IGN] graphe
[Termes IGN] OpenStreetMap
[Termes IGN] Python (langage de programmation)
[Termes IGN] qualité
[Termes IGN] réseau routier
[Termes IGN] web 2.0Index. décimale : MTSI Mémoires du Master Technologies des Systèmes d'Information Résumé : Au sein de l’équipe d’ingénieur·e·s de LocationMind Inc., une startup japonaise, un vif intérêt a été porté sur Overture Maps Foundation (OMF), un jeu de données ouvert utilisant notamment des données d’OpenStreetMap (OSM), le jeu de données géographique le plus utilisé dans le monde.
Étant donné qu’OMF n’a été publié que récemment, les différences entre OSM et OMF sont encore assez floues. C’est pourquoi essayer de comparer ces jeux de données constitue un défi intéressant, surtout en développant un système de visualisation permettant d’analyser ces résultats sur les réseaux routiers uniquement.
Pour ce faire, après avoir choisi des critères de qualité pour comparer ces données, des scripts Python utilisant DuckDB, OSMnx et GeoPandas ont été produits afin d’évaluer la qualité de ces jeux de données, en créant préalablement un modèle de données commun. Un tableau de bord a été choisi pour visualiser les données, s’appuyant sur les technologies Shiny for Python et LonBoard.
L’interface réalisée est fonctionnelle et permet d’analyser les résultats sur des zones prédéterminées. Il n’est cependant pas encore possible de comparer pleinement les deux jeux de données, l’évaluation n’ayant été réalisée que sur des zones tests et non sur des pays entiers.Note de contenu : Introduction
1. Contexte and challenges
2. Quality assessment
3. Visualisation system
4. Results and perspectives
ConclusionNuméro de notice : 24229 Affiliation des auteurs : IGN (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : LocationMind Inc. Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103837 Leveraging deep learning and remote sensing to predict ecosystem types in the NiN framework / Matteo Crespin-Jouan (2024)
Titre : Leveraging deep learning and remote sensing to predict ecosystem types in the NiN framework Type de document : Mémoire Auteurs : Matteo Crespin-Jouan, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2024 Importance : 41 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire d'ingénieur 2e annéeLangues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] cartographie
[Termes IGN] couverture (données géographiques)
[Termes IGN] gradient
[Termes IGN] occupation du sol
[Termes IGN] Sentinel-2
[Termes IGN] télédétection
[Termes IGN] végétationIndex. décimale : PROJET Mémoires : Rapports de projet - stage des ingénieurs de 2e année Résumé : (auteur) Ce rapport présente les résultats d’un stage effectué au sein du Geo-Ecology Research Group (GEco) du Muséum d’Histoire Naturelle d’Oslo. Le projet a porté sur l’application de techniques d’apprentissage profond pour classifier les écosystèmes norvégiens en se basant sur les données du système de classification Natur i Norge (NiN). Différentes sources de données ont été utilisées notamment des images aériennes de drones, des photos prises au sol et des données satellitaires Sentinel, afin de prédire les types d’écosystèmes et des gradients environnementaux clés, tels que la richesse en calcaire. L’étude a exploré différentes approches, notamment les réseaux neuronaux convolutifs (CNN) et les perceptrons multicouches (MLP), en mettant l’accent sur l’exploitation des informations spectrales plutôt que des caractéristiques spatiales. Les résultats ont mis en évidence les défis liés au travail avec des données limitées et incohérentes, en particulier dans le contexte de classifications très détaillée comme NiN. Bien que les modèles aient montré un certain succès, notamment avec l’utilisation de données hyperspectrales, les résultats ont été limités par la qualité et la cohérence des labels
disponibles.Note de contenu : Introduction
1. About the Data, the labels, and the distribution of the labels in the datasets
2. CNNs and vision transformers to leverage shape and texture features
3. A more successful endeavour : a mere mutliplayer perceptron on hyper-spectral satellite images
ConclusionNuméro de notice : 24266 Affiliation des auteurs : IGN (2020- ) Thématique : BIODIVERSITE/GEOMATIQUE/INFORMATIQUE Nature : Mémoire de projet pluridisciplinaire Organisme de stage : Geo-Ecology Research Group (GEco), at Oslo’s Natural History Museum (NHM) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103901 A Powerful Correspondence Selection Method for Point Cloud Registration Based on Machine Learning / Wuyong Tao in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 11 (November 2023)
![]()
[article]
Titre : A Powerful Correspondence Selection Method for Point Cloud Registration Based on Machine Learning Type de document : Article/Communication Auteurs : Wuyong Tao, Auteur ; Dong Xu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 703 - 712 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de points
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] semis de pointsRésumé : (auteur) Correspondence selection is an indispensable process in point cloud registration. The success of point cloud registration largely depends on a good correspondence selection method. For this purpose, a novel correspondence selection method is proposed in this paper. First, two geometric constraints, one of which is proposed in this paper, are used to compute the compatibility score between two correspondences. Then, the feature vectors of the correspondences are constructed according to the compatibility scores between the correspondence and others. A support vector machine classifier is trained to classify the correct and incorrect correspondences by using the feature vectors. The experimental results demonstrate that our method can choose the right correspondences well and get high precision and F-score performance. Also, our method has the best robustness to noise, pointdensity variation, and partial overlap compared to the other methods. Numéro de notice : A2023-237 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.23-00046R2 En ligne : https://doi.org/10.14358/PERS.23-00046R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103597
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 11 (November 2023) . - pp 703 - 712[article]Assuring the quality of VGI on land use and land cover: experiences and learnings from the LandSense project / Giles M. Foody in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
![]()
[article]
Titre : Assuring the quality of VGI on land use and land cover: experiences and learnings from the LandSense project Type de document : Article/Communication Auteurs : Giles M. Foody, Auteur ; Gavin Long, Auteur ; Michael Schultz, Auteur ; Ana-Maria Olteanu-Raimond , Auteur
Année de publication : 2023 Projets : Landsense / Raimond, Ana-Maria Article en page(s) : n° 2100285 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] assurance qualité
[Termes IGN] données localisées des bénévoles
[Termes IGN] occupation du sol
[Termes IGN] qualité des données
[Termes IGN] utilisation du solRésumé : (auteur) The potential of citizens as a source of geographical information has been recognized for many years. Such activity has grown recently due to the proliferation of inexpensive location aware devices and an ability to share data over the internet. Recently, a series of major projects, often cast as citizen observatories, have helped explore and develop this potential for a wide range of applications. Here, some of the experiences and learnings gained from part of one such project, which aimed to further the role of citizen science within Earth observation and help address environmental challenges, LandSense, are shared. The key focus is on quality assurance of citizen generated data on land use and land cover especially to support analyses of remotely sensed data and products. Particular focus is directed to quality assurance checks on photographic image quality, privacy, polygon overlap, positional accuracy and offset, contributor agreement, and categorical accuracy. The discussion aims to provide good practice advice to aid future studies and help fulfil the full potential of citizens as a source of volunteered geographical information (VGI). Numéro de notice : A2023-081 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2100285 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2100285 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101337
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023] . - n° 2100285[article]Quality assessment of volunteered geographic information for outdoor activities: an analysis of OpenStreetMap data for names of peaks in Japan / Jun Yamashita in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
![]()
[article]
Titre : Quality assessment of volunteered geographic information for outdoor activities: an analysis of OpenStreetMap data for names of peaks in Japan Type de document : Article/Communication Auteurs : Jun Yamashita, Auteur ; Toshikazu Seto, Auteur ; Nobusuke Iwasaki, Auteur ; Yuichiro Nishimura, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] données localisées des bénévoles
[Termes IGN] Japon
[Termes IGN] montagne
[Termes IGN] OpenStreetMap
[Termes IGN] oronymie
[Termes IGN] qualité des donnéesRésumé : (auteur) Geographical studies of outdoor activities have increased in recent years with the rise in popularity of these activities worldwide, including in Japan. Volunteered geographic information (VGI) is a key tool for organizing outdoor activities as it offers a means to determine the locational information and names of places. To evaluate the quality of VGI, geospatial data generated by land survey agencies and other VGI are often utilized as reference data. However, since these reference data may not be available, other methods are necessary to assure the quality of VGI. In this study, we examined five trust indicators based on the inherent characteristics of VGI through an empirical case study. We used mountain names extracted from OpenStreetMap in Japan as data because there were almost no other VGI in the vicinity. As a result, we isolated three trust indicators, namely versions, users, and tag corrections, to examine the thematic accuracy of VGI because these were the only statistically significant indicators. However, we found that the prediction rate of thematic accuracy was very low. To improve thematic accuracy, this study recommends using the most accurate versions, applying correctly given tags, and considering the motivations and characteristics of the VGI contributors. Numéro de notice : A2022-611 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2085188 Date de publication en ligne : 01/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2085188 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101365
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023][article]Automatic generation of outline-based representations of landmark buildings with distinctive shapes / Peng Ti in International journal of geographical information science IJGIS, vol 37 n° 4 (April 2023)
PermalinkMethods for matching English language addresses / Keshav Ramani in Transactions in GIS, vol 27 n° 2 (april 2023)
PermalinkTowards global scale segmentation with OpenStreetMap and remote sensing / Munazza Usmani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
PermalinkDeriving map images of generalised mountain roads with generative adversarial networks / Azelle Courtial in International journal of geographical information science IJGIS, vol 37 n° 3 (March 2023)
PermalinkGeneration of concise 3D building model from dense meshes by extracting and completing planar primitives / Xinyi Liu in Photogrammetric record, vol 38 n° 181 (March 2023)
PermalinkA graph-based approach for representing addresses in geocoding / Chen Zhang in Computers, Environment and Urban Systems, vol 100 (March 2023)
PermalinkMapping population distribution from open address data: application to mainland Portugal / Nelson Mileu in Journal of maps, vol 18 n° 3 (March 2023)
PermalinkSALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images / Hao Wu in Computers, Environment and Urban Systems, vol 100 (March 2023)
PermalinkSiamese KPConv: 3D multiple change detection from raw point clouds using deep learning / Iris de Gelis in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
PermalinkA spatiotemporal data model and an index structure for computational time geography / Bi Yu Chen in International journal of geographical information science IJGIS, vol 37 n° 3 (March 2023)
PermalinkWho owns the map? Data sovereignty and government spatial data collection, use, and dissemination / Peter A. Johnson in Transactions in GIS, vol 27 n° 1 (February 2023)
PermalinkAnalysing urban growth using machine learning and open data: An artificial neural network modelled case study of five Greek cities / Pavlos Tsagkis in Sustainable Cities and Society, vol 89 (February 2023)
PermalinkComparative analysis of different CNN models for building segmentation from satellite and UAV images / Batuhan Sariturk in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 2 (February 2023)
PermalinkIdentification of enclaves and exclaves by computation based on point-set topology / Xiaonan Wang in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
PermalinkIs the radial distance really a distance? An analysis of its properties and interest for the matching of polygon features / Yann Méneroux in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
PermalinkLarge-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
PermalinkMulti-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services / Mingyue Xu in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
PermalinkWhere am I now? modelling disorientation in pan-scalar maps / Guillaume Touya in ISPRS International journal of geo-information, vol 12 n° 2 (February 2023)
PermalinkAnalysis of cycling network evolution in OpenStreetMap through a data quality prism / Raphaël Bres (2023)
PermalinkPermalinkCorrelation of road network structure and urban mobility intensity: An exploratory study using geo-tagged tweets / Li Geng in ISPRS International journal of geo-information, vol 12 n° 1 (January 2023)
PermalinkPermalinkGeographically masking addresses to study COVID-19 clusters / Walid Houfaf-Khoufaf in Cartography and Geographic Information Science, vol inconnu (2023)
PermalinkGeoMultiTaskNet: remote sensing unsupervised domain adaptation using geographical coordinates / Valerio Marsocci (2023)
PermalinkGeospatial-based machine learning techniques for land use and land cover mapping using a high-resolution unmanned aerial vehicle image / Taposh Mollick in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)
PermalinkA hexagon-based method for polygon generalization using morphological operators / Lu Wang in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
PermalinkHGAT-VCA: Integrating high-order graph attention network with vector cellular automata for urban growth simulation / Xuefeng Guan in Computers, Environment and Urban Systems, vol 99 (January 2023)
PermalinkA hierarchical multiview registration framework of TLS point clouds based on loop constraint / Hao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
PermalinkIncorporating ideas of structure and meaning in interactive multi scale mapping environments / Guillaume Touya in International journal of cartography, vol inconnu (2023)
PermalinkLandscape metrics regularly outperform other traditionally-used ancillary datasets in dasymetric mapping of population / Heng Wan in Computers, Environment and Urban Systems, vol 99 (January 2023)
PermalinkLinear building pattern recognition in topographical maps combining convex polygon decomposition / Zhiwei Wei in Geocarto international, vol 38 n° inconnu ([01/01/2023])
PermalinkMachine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami / Riantini Virtriana in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
PermalinkMeasuring metro accessibility: An exploratory study of Wuhan based on multi-source urban data / Tao Wu in ISPRS International journal of geo-information, vol 12 n° 1 (January 2023)
PermalinkA method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination / Kaili Zhang in Geocarto international, vol 38 n° 1 ([01/01/2023])
PermalinkMitigating the risk of wind damage at the forest landscape level by using stand neighbourhood and terrain elevation information in forest planning / Roope Ruotsalainen in Forestry, an international journal of forest research, vol 96 n° 1 (January 2023)
PermalinkModern vectorization and alignment of historical maps: An application to Paris Atlas (1789-1950) / Yizi Chen (2023)
PermalinkPermalinkSemi-automated Pipeline to Produce Customizable Tactile Maps of Street Intersections for People with Visual Impairments / Yuhao Jiang (2023)
PermalinkThe cellular automata approach in dynamic modelling of land use change detection and future simulations based on remote sensing data in Lahore Pakistan / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)
PermalinkUsing Google Earth Engine to classify unique forest and agroforest classes using a mix of Sentinel 2a spectral data and topographical features: a Sri Lanka case study / W.D.K.V. Nandasena in Geocarto international, vol 38 n° inconnu ([01/01/2023])
PermalinkAutomatic registration method of multi-source point clouds based on building facades matching in urban scenes / Yumin Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)
PermalinkAutomatic registration of point cloud and panoramic images in urban scenes based on pole matching / Yuan Wang in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
PermalinkCoastal land use and shoreline evolution along the Nador lagoon Coast in Morocco / Khalid El Khalidi in Geocarto international, vol 37 n° 25 ([01/12/2022])
PermalinkHyperspectral imagery and urban areas: results of the HYEP project / Christiane Weber in Revue Française de Photogrammétrie et de Télédétection, n° 224 (2022)
PermalinkIntegration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia / Mitiku Badasa Moisa in Applied geomatics, vol 14 n° 4 (December 2022)
PermalinkLinkClimate: An interoperable knowledge graph platform for climate data / Jiantao Wu in Computers & geosciences, vol 169 (December 2022)
PermalinkMapping impervious surfaces with a hierarchical spectral mixture analysis incorporating endmember spatial distribution / Zhenfeng Shao in Geo-spatial Information Science, vol 25 n° 4 (December 2022)
PermalinkProgressive collapse of dual-line rivers based on river segmentation considering cartographic generalization rules / Fubing Zhang in ISPRS International journal of geo-information, vol 11 n° 12 (December 2022)
PermalinkReconstructing compact building models from point clouds using deep implicit fields / Zhaiyu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
PermalinkSemantic integration of OpenStreetMap and CityGML with formal concept analysis / Somayeh Ahmadian in Transactions in GIS, vol 26 n° 8 (December 2022)
PermalinkSpatio-temporal patterns of wildfires in Siberia during 2001–2020 / Oleg Tomshin in Geocarto international, vol 37 n° 25 ([01/12/2022])
PermalinkStreet-level traffic flow and context sensing analysis through semantic integration of multisource geospatial data / Yatao Zhang in Transactions in GIS, vol 26 n° 8 (December 2022)
PermalinkTesting of a new way of cadastral maps renewal in Slovakia / Peter Kyseľ in Geodetski vestnik, vol 66 n° 4 (December 2022 - February 2023)
PermalinkUrban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis / Das Subhasis in Geocarto international, vol 37 n° 25 ([01/12/2022])
PermalinkVine canopy reconstruction and assessment with terrestrial Lidar and aerial imaging / Igor Petrovic in Remote sensing, vol 14 n° 22 (November-2 2022)
PermalinkAn unsupervised framework for extracting multilane roads from OpenStreetMap / Kunkun Wu in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
PermalinkAssociating land registry and cadastre transactions with LADM-based external archive data model: a case study of Turkey / Zeynel Abidin Polat in Survey review, vol 54 n° 387 (November 2022)
PermalinkBuilding a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images / Emilio Chuvieco in Science of the total environment, vol 845 (November 1 2022)
PermalinkEvaluation of automatic prediction of small horizontal curve attributes of mountain roads in GIS environments / Sercan Gülci in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
PermalinkA machine learning approach for detecting rescue requests from social media / Zheye Wang in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
PermalinkA new spatial database framework for pedestrian indoor navigation based on the OpenStreetMap tag information / Gift Dumedah in Transactions in GIS, vol 26 n° 7 (November 2022)
PermalinkA robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL) / Anchal Kumawat in The Visual Computer, vol 38 n° 11 (November 2022)
PermalinkSemi-automatic development of thematic tactile maps / Jakub Wabiński in Cartography and Geographic Information Science, vol 49 n° 6 (November 2022)
PermalinkComparison of change and static state as the dependent variable for modeling urban growth / Yongjiu Feng in Geocarto international, vol 37 n° 23 ([15/10/2022])
PermalinkRaster-based method for building selection in the multi-scale representation of two-dimensional maps / Yilang Shen in Geocarto international, vol 37 n° 22 ([10/10/2022])
PermalinkApplication of a graph convolutional network with visual and semantic features to classify urban scenes / Yongyang Xu in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
PermalinkIdentifying the key resources and missing elements to build a knowledge graph dedicated to spatial dataset search / Mehdi Zrhal in Procedia Computer Science, vol 207 (2022)
PermalinkIncremental road network update method with trajectory data and UAV remote sensing imagery / Jianxin Qin in ISPRS International journal of geo-information, vol 11 n° 10 (October 2022)
PermalinkInvestigation of recognition and classification of forest fires based on fusion color and textural features of images / Cong Li in Forests, vol 13 n° 10 (October 2022)
PermalinkPredicting the variability in pedestrian travel rates and times using crowdsourced GPS data / Michael J. Campbell in Computers, Environment and Urban Systems, vol 97 (October 2022)
PermalinkThe fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas / Jun Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 10 (October 2022)
PermalinkCrowdsourcing-based application to solve the problem of insufficient training data in deep learning-based classification of satellite images / Ekrem Saralioglu in Geocarto international, vol 37 n° 18 ([01/09/2022])
PermalinkDeep learning method for Chinese multisource point of interest matching / Pengpeng Li in Computers, Environment and Urban Systems, vol 96 (September 2022)
PermalinkPourquoi le rendu des zones rocheuses sur les nouvelles cartes IGN est-il si différent de l’ancien ? / Paul Courbon in XYZ, n° 172 (septembre 2022)
PermalinkSimulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices / Najmeh Mozaffaree Pour in Environmental Monitoring and Assessment, vol 194 n° 9 (September 2022)
PermalinkEffective CBIR based on hybrid image features and multilevel approach / D. Latha in Multimedia tools and applications, vol 81 n° 20 (August 2022)
PermalinkSpatial–spectral attention network guided with change magnitude image for land cover change detection using remote sensing images / Zhiyong Lv in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
Permalink3D-GIS parametric modelling for virtual urban simulation using CityEngine / Ibrahim M. Badwi in Annals of GIS, vol 28 n° 3 (July 2022)
PermalinkCartographie : Le dispositif national de suivi des bocages / Sophie Morin Pinaud in Courrier de la nature, No special 2022 ([01/07/2022])
PermalinkGeographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis / Chuan Yin in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)
PermalinkHeat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)
PermalinkIntegration of GNSS observations with volunteered geographic information for improved navigation performance / Tarek Hassan in Journal of applied geodesy, vol 16 n° 3 (July 2022)
PermalinkInvestigating the role of image retrieval for visual localization / Martin Humenberger in International journal of computer vision, vol 130 n° 7 (July 2022)
PermalinkLidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks / Aurélien Brun in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
PermalinkPermalinkA participatory trail web map based on open source technologies / Joshua Gore in International journal of cartography, vol 8 n° 2 (July 2022)
PermalinkPolyline simplification based on the artificial neural network with constraints of generalization knowledge / Jiawei Du in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
PermalinkStreet-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
PermalinkCoupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
PermalinkDetecting spatiotemporal traffic events using geosocial media data / Shishuo Xu in Computers, Environment and Urban Systems, vol 94 (June 2022)
PermalinkDiffusionNet: discretization agnostic learning on surfaces / Nicholas Sharp in ACM Transactions on Graphics, TOG, Vol 41 n° 3 (June 2022)
PermalinkA GIS-based approach for identification of optimum runoff harvesting sites and storage estimation: a study from Subarnarekha-Kangsabati Interfluve, India / Manas Karmakar in Applied geomatics, vol 14 n° 2 (June 2022)
PermalinkGraph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)
PermalinkLarge-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images / Lingdong Mao in Landscape and Urban Planning, vol 222 (June 2022)
PermalinkMulti-objective optimization of urban environmental system design using machine learning / Peiyuan Li in Computers, Environment and Urban Systems, vol 94 (June 2022)
PermalinkSelf-organizing maps as a dimension reduction approach for spatial global sensitivity analysis visualization / Seda Şalap-Ayça in Transactions in GIS, vol 26 n° 4 (June 2022)
PermalinkThe interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria / Alfred S. Alademomi in Applied geomatics, vol 14 n° 2 (June 2022)
PermalinkThe promising combination of a remote sensing approach and landscape connectivity modelling at a fine scale in urban planning / Elie Morin in Ecological indicators, vol 139 (June 2022)
PermalinkAnalysis of massive imports of open data in Openstreetmap database: a study case for France / Arnaud Le Guilcher in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)
PermalinkMulti-resolution representation using graph database / Yizhi Huang in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)
PermalinkClassification of vegetation classes by using time series of Sentinel-2 images for large scale mapping in Cameroon / Hermann Tagne in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
PermalinkChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network / Qinjun Qiu in Transactions in GIS, vol 26 n° 3 (May 2022)
PermalinkFusion of optical, radar and waveform LiDAR observations for land cover classification / Huiran Jin in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
PermalinkA GIS representation framework for location-based social media activities / Xuebin Wei in Transactions in GIS, vol 26 n° 3 (May 2022)
PermalinkHiPerMovelets: high-performance movelet extraction for trajectory classification / Tarlis Tortelli Portela in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
PermalinkImpacts of spatiotemporal resolution and tiling on SLEUTH model calibration and forecasting for urban areas with unregulated growth patterns / Damilola Eyelade in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
PermalinkSmartphone digital photography for fractional vegetation cover estimation / Gaofei Yin in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 5 (May 2022)
PermalinkPermalinkAccuracy issues for spatial update of digital cadastral maps / David Pullar in ISPRS International journal of geo-information, vol 11 n° 4 (April 2022)
PermalinkDetecting land use and land cover change on Barbuda before and after the Hurricane Irma with respect to potential land grabbing: A combined volunteered geographic information and multi sensor approach / Andreas Rienow in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
PermalinkDiscovering co-location patterns in multivariate spatial flow data / Jiannan Cai in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
PermalinkExploring the association between street built environment and street vitality using deep learning methods / Yunqin Li in Sustainable Cities and Society, vol 79 (April 2022)
PermalinkMining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction / Jincai Huang in Transactions in GIS, vol 26 n° 2 (April 2022)
PermalinkProcedural urban forestry / Till Niese in ACM Transactions on Graphics, TOG, Vol 41 n° 2 (April 2022)
PermalinkSpatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
PermalinkTravaux actuels d'inventaire des forêts à forte naturalité à l'échelle nationale et européenne / Fabienne Benest in Revue forestière française, vol 73 n° 2 - 3 (2021)
PermalinkAccessing spatial knowledge networks with maps / Markus Jobst in International journal of cartography, vol 8 n° 1 (March 2022)
PermalinkA l'aide ! Je me suis perdu en zoomant / Guillaume Touya in Cartes & Géomatique, n° 247-248 (mars-juin 2022)
PermalinkCartographie et caractérisation des lieux d'intérêt de cervidés en milieu forestier / Laurence Jolivet in Cartes & Géomatique, n° 247-248 (mars-juin 2022)
PermalinkComparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour / Olivier de Joinville in XYZ, n° 170 (mars 2022)
PermalinkConsideration on how to introduce gamification tools to enhance citizen engagement in crowdsourced cadastral surveys / K. Apostolopoulos in Survey review, vol 54 n° 383 (March 2022)
PermalinkA cost-effective method for reconstructing city-building 3D models from sparse Lidar point clouds / Marek Kulawiak in Remote sensing, vol 14 n° 5 (March-1 2022)
PermalinkEstimation of uneven-aged forest stand parameters, crown closure and land use/cover using the Landsat 8 OLI satellite image / Sinan Kaptan in Geocarto international, vol 37 n° 5 ([01/03/2022])
PermalinkEvaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/03/2022])
PermalinkÉvaluation des apports de l’apprentissage profond au sein d’un service dédié à la numérisation du patrimoine / Maxime Mérizette in XYZ, n° 170 (mars 2022)
PermalinkExploring the relationship between the 2D/3D architectural morphology and urban land surface temperature based on a boosted regression tree: A case study of Beijing, China / Zhen Li in Sustainable Cities and Society, vol 78 (March 2022)
PermalinkExploring the strategy goals and strategy drivers of national mapping, cadastral, and land registry authorities / Erik Hämäläinen in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)
PermalinkExtraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning / Jun Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
PermalinkIdentification de relations spatiales par apprentissage profond sur des graphes / Azelle Courtial in Cartes & Géomatique, n° 247-248 (mars-juin 2022)
PermalinkProbabilistic unsupervised classification for large-scale analysis of spectral imaging data / Emmanuel Paradis in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
PermalinkReBankment : un algorithme pour déplacer les talus sur les cartes par moindres carrés / Guillaume Touya in Cartes & Géomatique, n° 247-248 (mars-juin 2022)
PermalinkReBankment: displacing embankment lines from roads and rivers with a least squares adjustment / Guillaume Touya in International journal of cartography, vol 8 n° 1 (March 2022)
PermalinkRetours d'expérience de la mise en place d'une plateforme collaborative pour le suivi de l'usage du sol / Ana-Maria Olteanu-Raimond in Cartes & Géomatique, n° 247-248 (mars-juin 2022)
PermalinkRoad network generalization method constrained by residential areas / Zheng Lyu in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)
PermalinkUsing street view images to identify road noise barriers with ensemble classification model and geospatial analysis / Kai Zhang in Sustainable Cities and Society, vol 78 (March 2022)
PermalinkSimulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model / Hasan Aksoy in Geocarto international, vol 37 n° 4 ([15/02/2022])
PermalinkApplication of catastrophe theory to spatial analysis of groundwater potential in a sub-humid tropical region: a hybrid approach / Laishram Kanta Singh in Geocarto international, vol 37 n° 3 ([01/02/2022])
PermalinkDiscovering transition patterns among OpenStreetMap feature classes based on the Louvain method / Yijiang Zhao in Transactions in GIS, vol 26 n° 1 (February 2022)
PermalinkGazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules / Xuke Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
PermalinkGenerating 2m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network / Da He in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)
PermalinkGisGCN: a visual graph-based framework to match geographical areas through time / Margarita Khokhlova in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
PermalinkQuantifying the shape of urban street trees and evaluating its influence on their aesthetic functions based on mobile lidar data / Tianyu Hu in ISPRS Journal of photogrammetry and remote sensing, vol 184 (February 2022)
PermalinkQuickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations / Ruozhen Cheng in Transactions in GIS, vol 26 n° 1 (February 2022)
PermalinkRaw GIS to 3D road modeling for real-time traffic simulation / Yacine Amara in The Visual Computer, vol 38 n° 1 (January 2022)
Permalink3D modeling of urban area based on oblique UAS images - An end-to-end pipeline / Valeria-Ersilia Oniga in Remote sensing, vol 14 n° 2 (January-2 2022)
PermalinkSemantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network / Ekrem Saralioglu in Geocarto international, vol 37 n° 2 ([15/01/2022])
PermalinkPermalinkAn approach for multi-scale urban building data integration and enrichment through geometric matching and semantic web / Abdulkadir Memduhoglu in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
PermalinkPermalinkAutomatic identification of addresses: A systematic literature review / Paula Cruz in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
PermalinkPermalinkA benchmark of named entity recognition approaches in historical documents : application to 19th century French directories / Nathalie Abadie (2022)
PermalinkPermalinkCombining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: A case study of Wanzhou section of the Three Gorges Reservoir, China / Huijuan Zhang in Computers & geosciences, vol 158 (January 2022)
PermalinkCrossroadsDescriber, automatic textual description of OpenStreetMap intersections / Jérémy Kalsron (2022)
PermalinkPermalinkPermalinkDeveloping the potential of airborne lidar systems for the sustainable management of forests / Karun Dayal (2022)
PermalinkPermalinkÉvaluation des grandeurs moyennes caractérisant les infrastructures agroécologiques du Gers / Adrien Dupas (2022)
PermalinkÉvaluation de la qualité des données géographiques d'OpenStreetMap à l'aide des méthodes d'apprentissage automatique : cas de la République de Djibouti / Ibrahim Maidaneh Abdi (2022)
PermalinkFLAIR: French Land cover from Aerial ImageRy - Challenge FLAIR #1: semantic segmentation and domain adaptation / Anatol Garioud (2022)
PermalinkFlood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 (2022)
PermalinkFungal perspective of pine and oak colonization in Mediterranean degraded ecosystems / Irene Adamo in Forests, vol 13 n° 1 (January 2022)
PermalinkGenerating geographical location descriptions with spatial templates: a salient toponym driven approach / Mark M. Hall in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)
PermalinkGuidelines for standardizing the design of tactile maps: A review of research and best practice / Jakub Wabiński in Cartographic journal (the), vol 59 n° 3 (August 2022)
PermalinkHarmonisation de la production cartographique dans le cadre des Programmes d’Actions de Prévention des Inondations / Nils Deslandes (2022)
PermalinkA hierarchical model for semantic trajectories and event extraction in indoor and outdoor spaces / Hassan Noureddine (2022)
PermalinkImportance des facteurs locaux climatiques et édaphiques dans la dynamique de régénération des communautés à hêtre en marge d’aire de répartition / Ludovic Lacombe (2022)
PermalinkImproving LSMA for impervious surface estimation in an urban area / Jin Wang in European journal of remote sensing, vol 55 n° 1 (2022)
PermalinkIncorporation of spatial anisotropy in urban expansion modelling with cellular automata / Jinqu Zhang in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)
PermalinkPermalinkInteractive HGIS platform union of Lublin (1569): A geomatic solution for discovering the Jagiellonian heritage of the city / Jakub Kuna in Journal of Cultural Heritage, vol 53 (January–February 2022)
PermalinkPermalinkItalian National Forest Inventory: Methods and results of the third survey / Patrizia Gasparini (2022)
PermalinkJahresbericht 2021 des Bundesamtes für Kartographie und Geodäsie / Bundesamt für Kartographie und Geodäsie (2022)
![]()
PermalinkPermalinkA method to produce metadata describing and assessing the quality of spatial landmark datasets in mountain area / Marie-Dominique Van Damme (2022)
PermalinkMLMT-CNN for object detection and segmentation in multi-layer and multi-spectral images / Majedaldein Almahasneh in Machine Vision and Applications, vol 33 n° 1 (January 2022)
PermalinkPermalinkMulti-criteria geographic analysis for automated cartographic generalization / Guillaume Touya in Cartographic journal (the), vol 59 n° 1 (February 2022)
PermalinkNovel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation / Hang Zhang in Pattern recognition, vol 121 (January 2022)
PermalinkPhotogrammetric 3D mobile mapping of rail tracks / Philipp Glira in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)
PermalinkPermalinkPermalinkReprésentation et combinaison de l'information géographique pour l'apprentissage profond / Azelle Courtial (2022)
![]()
PermalinkRepresenting vector geographic information as a tensor for deep learning based map generalisation / Azelle Courtial (2022)
PermalinkThe use of volunteer geographic information for producing and maintaining authoritative land use and land cover data / Ana-Maria Olteanu-Raimond (2022)
PermalinkUrban infrastructure audit: an effective protocol to digitize signalized intersections by mining street view images / Xiao Li in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
PermalinkUse of multi-temporal and multi-sensor data for continental water body extraction in the context of the SWOT mission / Nicolas Gasnier (2022)
PermalinkAutomatic registration of mobile mapping system Lidar points and panoramic-image sequences by relative orientation model / Ningning Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 12 (December 2021)
PermalinkBuilding fuzzy areal geographical objects from point sets / Jifa Guo in Transactions in GIS, vol 25 n° 6 (December 2021)
PermalinkA comparative approach of support vector machine kernel functions for GIS-based landslide susceptibility mapping / Khalil Valizadeh Kamran in Applied geomatics, vol 13 n° 4 (December 2021)
PermalinkConnecting family trees to construct a population-scale and longitudinal geo-social network for the U.S. / Caglar Koylu in International journal of geographical information science IJGIS, vol 35 n° 12 (December 2021)
PermalinkParticle swarm optimization based water index (PSOWI) for mapping the water extents from satellite images / Mohammad Hossein Gamshadzaei in Geocarto international, vol 36 n° 20 ([01/12/2021])
Permalink