Descripteur
Documents disponibles dans cette catégorie (5200)


Etendre la recherche sur niveau(x) vers le bas
Titre : Global Open Data Assessment Type de document : Mémoire Auteurs : Mathis Rouillard, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2024 Importance : 48 p. Format : 21 x 30 cm Note générale : bibliographie
Rapport de fin d'étude, cycle des ING3, spécialisé TSILangues : Anglais (eng) Descripteur : [Termes IGN] graphe
[Termes IGN] OpenStreetMap
[Termes IGN] Python (langage de programmation)
[Termes IGN] qualité
[Termes IGN] réseau routier
[Termes IGN] web 2.0Index. décimale : MTSI Mémoires du Master Technologies des Systèmes d'Information Résumé : Au sein de l’équipe d’ingénieur·e·s de LocationMind Inc., une startup japonaise, un vif intérêt a été porté sur Overture Maps Foundation (OMF), un jeu de données ouvert utilisant notamment des données d’OpenStreetMap (OSM), le jeu de données géographique le plus utilisé dans le monde.
Étant donné qu’OMF n’a été publié que récemment, les différences entre OSM et OMF sont encore assez floues. C’est pourquoi essayer de comparer ces jeux de données constitue un défi intéressant, surtout en développant un système de visualisation permettant d’analyser ces résultats sur les réseaux routiers uniquement.
Pour ce faire, après avoir choisi des critères de qualité pour comparer ces données, des scripts Python utilisant DuckDB, OSMnx et GeoPandas ont été produits afin d’évaluer la qualité de ces jeux de données, en créant préalablement un modèle de données commun. Un tableau de bord a été choisi pour visualiser les données, s’appuyant sur les technologies Shiny for Python et LonBoard.
L’interface réalisée est fonctionnelle et permet d’analyser les résultats sur des zones prédéterminées. Il n’est cependant pas encore possible de comparer pleinement les deux jeux de données, l’évaluation n’ayant été réalisée que sur des zones tests et non sur des pays entiers.Note de contenu : Introduction
1. Contexte and challenges
2. Quality assessment
3. Visualisation system
4. Results and perspectives
ConclusionNuméro de notice : 24229 Affiliation des auteurs : IGN (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : LocationMind Inc. Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103837 Leveraging deep learning and remote sensing to predict ecosystem types in the NiN framework / Matteo Crespin-Jouan (2024)
Titre : Leveraging deep learning and remote sensing to predict ecosystem types in the NiN framework Type de document : Mémoire Auteurs : Matteo Crespin-Jouan, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2024 Importance : 41 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire d'ingénieur 2e annéeLangues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] cartographie
[Termes IGN] couverture (données géographiques)
[Termes IGN] gradient
[Termes IGN] occupation du sol
[Termes IGN] Sentinel-2
[Termes IGN] télédétection
[Termes IGN] végétationIndex. décimale : PROJET Mémoires : Rapports de projet - stage des ingénieurs de 2e année Résumé : (auteur) Ce rapport présente les résultats d’un stage effectué au sein du Geo-Ecology Research Group (GEco) du Muséum d’Histoire Naturelle d’Oslo. Le projet a porté sur l’application de techniques d’apprentissage profond pour classifier les écosystèmes norvégiens en se basant sur les données du système de classification Natur i Norge (NiN). Différentes sources de données ont été utilisées notamment des images aériennes de drones, des photos prises au sol et des données satellitaires Sentinel, afin de prédire les types d’écosystèmes et des gradients environnementaux clés, tels que la richesse en calcaire. L’étude a exploré différentes approches, notamment les réseaux neuronaux convolutifs (CNN) et les perceptrons multicouches (MLP), en mettant l’accent sur l’exploitation des informations spectrales plutôt que des caractéristiques spatiales. Les résultats ont mis en évidence les défis liés au travail avec des données limitées et incohérentes, en particulier dans le contexte de classifications très détaillée comme NiN. Bien que les modèles aient montré un certain succès, notamment avec l’utilisation de données hyperspectrales, les résultats ont été limités par la qualité et la cohérence des labels
disponibles.Note de contenu : Introduction
1. About the Data, the labels, and the distribution of the labels in the datasets
2. CNNs and vision transformers to leverage shape and texture features
3. A more successful endeavour : a mere mutliplayer perceptron on hyper-spectral satellite images
ConclusionNuméro de notice : 24266 Affiliation des auteurs : IGN (2020- ) Thématique : BIODIVERSITE/GEOMATIQUE/INFORMATIQUE Nature : Mémoire de projet pluridisciplinaire Organisme de stage : Geo-Ecology Research Group (GEco), at Oslo’s Natural History Museum (NHM) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103901 A Powerful Correspondence Selection Method for Point Cloud Registration Based on Machine Learning / Wuyong Tao in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 11 (November 2023)
![]()
[article]
Titre : A Powerful Correspondence Selection Method for Point Cloud Registration Based on Machine Learning Type de document : Article/Communication Auteurs : Wuyong Tao, Auteur ; Dong Xu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 703 - 712 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de points
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] semis de pointsRésumé : (auteur) Correspondence selection is an indispensable process in point cloud registration. The success of point cloud registration largely depends on a good correspondence selection method. For this purpose, a novel correspondence selection method is proposed in this paper. First, two geometric constraints, one of which is proposed in this paper, are used to compute the compatibility score between two correspondences. Then, the feature vectors of the correspondences are constructed according to the compatibility scores between the correspondence and others. A support vector machine classifier is trained to classify the correct and incorrect correspondences by using the feature vectors. The experimental results demonstrate that our method can choose the right correspondences well and get high precision and F-score performance. Also, our method has the best robustness to noise, pointdensity variation, and partial overlap compared to the other methods. Numéro de notice : A2023-237 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.23-00046R2 En ligne : https://doi.org/10.14358/PERS.23-00046R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103597
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 11 (November 2023) . - pp 703 - 712[article]Assuring the quality of VGI on land use and land cover: experiences and learnings from the LandSense project / Giles M. Foody in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
![]()
[article]
Titre : Assuring the quality of VGI on land use and land cover: experiences and learnings from the LandSense project Type de document : Article/Communication Auteurs : Giles M. Foody, Auteur ; Gavin Long, Auteur ; Michael Schultz, Auteur ; Ana-Maria Olteanu-Raimond , Auteur
Année de publication : 2023 Projets : Landsense / Raimond, Ana-Maria Article en page(s) : n° 2100285 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] assurance qualité
[Termes IGN] données localisées des bénévoles
[Termes IGN] occupation du sol
[Termes IGN] qualité des données
[Termes IGN] utilisation du solRésumé : (auteur) The potential of citizens as a source of geographical information has been recognized for many years. Such activity has grown recently due to the proliferation of inexpensive location aware devices and an ability to share data over the internet. Recently, a series of major projects, often cast as citizen observatories, have helped explore and develop this potential for a wide range of applications. Here, some of the experiences and learnings gained from part of one such project, which aimed to further the role of citizen science within Earth observation and help address environmental challenges, LandSense, are shared. The key focus is on quality assurance of citizen generated data on land use and land cover especially to support analyses of remotely sensed data and products. Particular focus is directed to quality assurance checks on photographic image quality, privacy, polygon overlap, positional accuracy and offset, contributor agreement, and categorical accuracy. The discussion aims to provide good practice advice to aid future studies and help fulfil the full potential of citizens as a source of volunteered geographical information (VGI). Numéro de notice : A2023-081 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2100285 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2100285 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101337
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023] . - n° 2100285[article]Quality assessment of volunteered geographic information for outdoor activities: an analysis of OpenStreetMap data for names of peaks in Japan / Jun Yamashita in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
![]()
[article]
Titre : Quality assessment of volunteered geographic information for outdoor activities: an analysis of OpenStreetMap data for names of peaks in Japan Type de document : Article/Communication Auteurs : Jun Yamashita, Auteur ; Toshikazu Seto, Auteur ; Nobusuke Iwasaki, Auteur ; Yuichiro Nishimura, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] données localisées des bénévoles
[Termes IGN] Japon
[Termes IGN] montagne
[Termes IGN] OpenStreetMap
[Termes IGN] oronymie
[Termes IGN] qualité des donnéesRésumé : (auteur) Geographical studies of outdoor activities have increased in recent years with the rise in popularity of these activities worldwide, including in Japan. Volunteered geographic information (VGI) is a key tool for organizing outdoor activities as it offers a means to determine the locational information and names of places. To evaluate the quality of VGI, geospatial data generated by land survey agencies and other VGI are often utilized as reference data. However, since these reference data may not be available, other methods are necessary to assure the quality of VGI. In this study, we examined five trust indicators based on the inherent characteristics of VGI through an empirical case study. We used mountain names extracted from OpenStreetMap in Japan as data because there were almost no other VGI in the vicinity. As a result, we isolated three trust indicators, namely versions, users, and tag corrections, to examine the thematic accuracy of VGI because these were the only statistically significant indicators. However, we found that the prediction rate of thematic accuracy was very low. To improve thematic accuracy, this study recommends using the most accurate versions, applying correctly given tags, and considering the motivations and characteristics of the VGI contributors. Numéro de notice : A2022-611 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2085188 Date de publication en ligne : 01/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2085188 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101365
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023][article]Automatic generation of outline-based representations of landmark buildings with distinctive shapes / Peng Ti in International journal of geographical information science IJGIS, vol 37 n° 4 (April 2023)
PermalinkMethods for matching English language addresses / Keshav Ramani in Transactions in GIS, vol 27 n° 2 (april 2023)
PermalinkTowards global scale segmentation with OpenStreetMap and remote sensing / Munazza Usmani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
PermalinkDeriving map images of generalised mountain roads with generative adversarial networks / Azelle Courtial in International journal of geographical information science IJGIS, vol 37 n° 3 (March 2023)
PermalinkGeneration of concise 3D building model from dense meshes by extracting and completing planar primitives / Xinyi Liu in Photogrammetric record, vol 38 n° 181 (March 2023)
PermalinkA graph-based approach for representing addresses in geocoding / Chen Zhang in Computers, Environment and Urban Systems, vol 100 (March 2023)
PermalinkMapping population distribution from open address data: application to mainland Portugal / Nelson Mileu in Journal of maps, vol 18 n° 3 (March 2023)
PermalinkSALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images / Hao Wu in Computers, Environment and Urban Systems, vol 100 (March 2023)
PermalinkSiamese KPConv: 3D multiple change detection from raw point clouds using deep learning / Iris de Gelis in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
PermalinkA spatiotemporal data model and an index structure for computational time geography / Bi Yu Chen in International journal of geographical information science IJGIS, vol 37 n° 3 (March 2023)
Permalink