Descripteur
Termes IGN > géomatique > base de données localisées > appariement de données localisées > appariement sémantique
appariement sémantique |
Documents disponibles dans cette catégorie (19)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Street-level traffic flow and context sensing analysis through semantic integration of multisource geospatial data / Yatao Zhang in Transactions in GIS, vol 26 n° 8 (December 2022)
[article]
Titre : Street-level traffic flow and context sensing analysis through semantic integration of multisource geospatial data Type de document : Article/Communication Auteurs : Yatao Zhang, Auteur ; Martin Raubal, Auteur Année de publication : 2022 Article en page(s) : pp 3330 - 3348 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] allocation de Dirichlet latente
[Termes IGN] appariement sémantique
[Termes IGN] approche hiérarchique
[Termes IGN] données multisources
[Termes IGN] espace urbain
[Termes IGN] flux
[Termes IGN] milieu urbain
[Termes IGN] point d'intérêt
[Termes IGN] segmentation en régions
[Termes IGN] Singapour
[Termes IGN] trafic routier
[Termes IGN] utilisation du solRésumé : (auteur) Sensing urban spaces from multisource geospatial data is vital to understanding the transportation system in the urban context. However, the complexity of urban context and its indirect interaction with traffic flow deepen the difficulty of exploring their relationship. This study proposes a geo-semantic framework first to generate semantic representations of multi-hierarchical urban context and street-level traffic flow, and then investigate their mutual correlation and predictability using a novel semantic matching method. The results demonstrate that each street is associated with its multi-hierarchical spatial signatures of urban context and street-level temporal signatures of traffic flow. The correlation between urban context and traffic flow displays higher values after semantic matching than those in multi-hierarchies. Moreover, we found that utilizing traffic flow to predict urban context results in better accuracy than the reversed prediction. The results of signature analysis and relationship exploration can contribute to a deeper understanding of context-aware transportation research. Numéro de notice : A2022-916 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.13005 Date de publication en ligne : 27/11/2022 En ligne : https://doi.org/10.1111/tgis.13005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102348
in Transactions in GIS > vol 26 n° 8 (December 2022) . - pp 3330 - 3348[article]Deep learning method for Chinese multisource point of interest matching / Pengpeng Li in Computers, Environment and Urban Systems, vol 96 (September 2022)
[article]
Titre : Deep learning method for Chinese multisource point of interest matching Type de document : Article/Communication Auteurs : Pengpeng Li, Auteur ; Jiping Liu, Auteur ; An Luo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage profond
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] inférence sémantique
[Termes IGN] information sémantique
[Termes IGN] point d'intérêt
[Termes IGN] représentation vectorielle
[Termes IGN] traitement du langage naturelRésumé : (auteur) Multisource point of interest (POI) matching refers to the pairing of POIs that refer to the same geographic entity in different data sources. This also constitutes the core issue in geospatial data fusion and update. The existing methods cannot effectively capture the complex semantic information from a text, and the manually defined rules largely affect matching results. This study developed a multisource POI matching method based on deep learning that transforms the POI pair matching problem into a binary classification problem. First, we used three different Chinese word segmentation methods to segment the POI text attributes and used the segmentation results to train the Word2Vec model to generate the corresponding word vector representation. Then, we used the text convolutional neural network (Text-CNN) and multilayer perceptron (MLP) to extract the POI attributes' features and generate the corresponding feature vector representation. Finally, we used the enhanced sequential inference model (ESIM) to perform local inference and inference combination on each attribute to realize the classification of POI pairs. We used the POI dataset containing Baidu Map, Tencent Map, and Gaode Map from Chengdu to train, verify, and test the model. The experimental results show that the matching precision, recall rate, and F1 score of the proposed method exceed 98% on the test set, and it is significantly better than the existing matching methods. Numéro de notice : A2022-513 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101821 Date de publication en ligne : 18/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101053
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101821[article]Spatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
[article]
Titre : Spatially oriented convolutional neural network for spatial relation extraction from natural language texts Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Kai Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 839 - 866 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] exploration de données
[Termes IGN] langage naturel (informatique)
[Termes IGN] proximité sémantique
[Termes IGN] relation spatiale
[Termes IGN] relation topologique
[Termes IGN] site wiki
[Termes IGN] spatial metrics
[Termes IGN] système à base de connaissancesRésumé : (auteur) Spatial relation extraction (e.g., topological relations, directional relations, and distance relations) from natural language descriptions is a fundamental but challenging task in several practical applications. Current state-of-the-art methods rely on rule-based metrics, either those specifically developed for extracting spatial relations or those integrated in methods that combine multiple metrics. However, these methods all rely on developed rules and do not effectively capture the characteristics of natural language spatial relations because the descriptions may be heterogeneous and vague and may be context sparse. In this article, we present a spatially oriented piecewise convolutional neural network (SP-CNN) that is specifically designed with these linguistic issues in mind. Our method extends a general piecewise convolutional neural network with a set of improvements designed to tackle the task of spatial relation extraction. We also propose an automated workflow for generating training datasets by integrating new sentences with those in a knowledge base, based on string similarity and semantic similarity, and then transforming the sentences into training data. We exploit a spatially oriented channel that uses prior human knowledge to automatically match words and understand the linguistic clues to spatial relations, finally leading to an extraction decision. We present both the qualitative and quantitative performance of the proposed methodology using a large dataset collected from Wikipedia. The experimental results demonstrate that the SP-CNN, with its supervised machine learning, can significantly outperform current state-of-the-art methods on constructed datasets. Numéro de notice : A2022-365 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12887 Date de publication en ligne : 27/12/2021 En ligne : https://doi.org/10.1111/tgis.12887 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100584
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 839 - 866[article]Connecting family trees to construct a population-scale and longitudinal geo-social network for the U.S. / Caglar Koylu in International journal of geographical information science IJGIS, vol 35 n° 12 (December 2021)
[article]
Titre : Connecting family trees to construct a population-scale and longitudinal geo-social network for the U.S. Type de document : Article/Communication Auteurs : Caglar Koylu, Auteur ; Diansheng Guo, Auteur ; Yuan Huang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2380 - 2423 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement sémantique
[Termes IGN] collecte de données
[Termes IGN] démographie
[Termes IGN] dix-neuvième siècle
[Termes IGN] données localisées des bénévoles
[Termes IGN] données publiques
[Termes IGN] Etats-Unis
[Termes IGN] généalogie
[Termes IGN] géocodage
[Termes IGN] historique des données
[Termes IGN] itération
[Termes IGN] migration humaine
[Termes IGN] mobilité humaine
[Termes IGN] réseau social géodépendant
[Termes IGN] système d'information historiqueRésumé : (auteur) We collected 92,832 user-contributed and publicly available family trees from rootsweb.com, including 250 million individuals who were born in North America and Europe between 1630 and 1930. We cleaned and connected the family trees to create a population-scale and longitudinal family tree dataset using a workflow of data collection and cleaning, geocoding, fuzzy record linkage and a relation-based iterative search for connecting trees and deduplication of records. Given the largest connected component of nearly 40 million individuals, and a total of 80 million individuals, we generated, to date, the largest population-scale and longitudinal geo-social network over centuries. We evaluated the representativeness of the family tree dataset for historical population demography and mobility by comparing the data to the 1880 Census. Our results showed that the family trees were biased towards males, the elderly, farmers, and native-born white segments of the population. Individuals were highly mobile – in our 1880 sample of parent-child pairs where both were born in the U.S., 47% were born in different states. Our findings agreed with prior studies that people migrated from East to West in horizontal bands, and the trend was reflected in the dialects and regional structure of the U.S. Numéro de notice : A2021-876 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1821885 Date de publication en ligne : 30/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1821885 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99139
in International journal of geographical information science IJGIS > vol 35 n° 12 (December 2021) . - pp 2380 - 2423[article]Semantic signatures for large-scale visual localization / Li Weng in Multimedia tools and applications, vol 80 n° 15 (June 2021)
[article]
Titre : Semantic signatures for large-scale visual localization Type de document : Article/Communication Auteurs : Li Weng , Auteur ; Valérie Gouet-Brunet , Auteur ; Bahman Soheilian , Auteur Année de publication : 2021 Projets : THINGS2D0 / Gouet-Brunet, Valérie Article en page(s) : pp 22347 - 22372 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement sémantique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image numérique
[Termes IGN] information sémantique
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] segmentation sémantique
[Termes IGN] zone urbaineRésumé : (auteur) Visual localization is a useful alternative to standard localization techniques. It works by utilizing cameras. In a typical scenario, features are extracted from captured images and compared with geo-referenced databases. Location information is then inferred from the matching results. Conventional schemes mainly use low-level visual features. These approaches offer good accuracy but suffer from scalability issues. In order to assist localization in large urban areas, this work explores a different path by utilizing high-level semantic information. It is found that object information in a street view can facilitate localization. A novel descriptor scheme called “semantic signature” is proposed to summarize this information. A semantic signature consists of type and angle information of visible objects at a spatial location. Several metrics and protocols are proposed for signature comparison and retrieval. They illustrate different trade-offs between accuracy and complexity. Extensive simulation results confirm the potential of the proposed scheme in large-scale applications. This paper is an extended version of a conference paper in CBMI’18. A more efficient retrieval protocol is presented with additional experiment results. Numéro de notice : A2021-787 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers ArXiv Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11042-020-08992-6 Date de publication en ligne : 07/05/2020 En ligne : https://doi.org/10.1007/s11042-020-08992-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95407
in Multimedia tools and applications > vol 80 n° 15 (June 2021) . - pp 22347 - 22372[article]Stop-and-move sequence expressions over semantic trajectories / Yenier Torres Izquierdo in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)PermalinkToward a yearly country-scale CORINE land-cover map without using images: A map translation approach / Luc Baudoux in Remote sensing, Vol 13 n° 6 (March 2021)PermalinkEnjeux et méthodes d’un liage de référentiels géographiques : l’exemple du projet de recherche ALEGORIA / Clara Lelièvre (2021)PermalinkA deep learning architecture for semantic address matching / Yue Lin in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)PermalinkModelling perceived risks to personal privacy from location disclosure on online social networks / Fatma S. Alrayes in International journal of geographical information science IJGIS, vol 34 n° 1 (January 2020)PermalinkATLAS: A three-layered approach to facade parsing / Markus Mathias in International journal of computer vision, vol 118 n° 1 (May 2016)PermalinkGénérer une emprise de carte à partir des toponymes d’un texte / Geoffrey Brun (2013)PermalinkAn evaluation of ontology matching in geo-service applications / L. Vaccari in Geoinformatica, vol 16 n° 1 (January 2012)PermalinkDécouverte de services basée sur leurs protocoles de conversation / J.C. Corrales in Ingénierie des systèmes d'information, ISI : Revue des sciences et technologies de l'information, RSTI, vol 12 n° 1 (janvier - février 2007)PermalinkPlate-forme AFIA, Nice, 30 mai - 3 juin 2005, 1. Journéee thématique Web sémantique pour le e-learning / Rose Dieng-Kuntz (2005)Permalink