Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > filtrage numérique d'image
filtrage numérique d'imageSynonyme(s)convolution d'image |
Documents disponibles dans cette catégorie (106)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
The iterative convolution–thresholding method (ICTM) for image segmentation / Dong Wang in Pattern recognition, vol 130 (October 2022)
[article]
Titre : The iterative convolution–thresholding method (ICTM) for image segmentation Type de document : Article/Communication Auteurs : Dong Wang, Auteur ; Xiaoping Wang, Auteur Année de publication : 2022 Article en page(s) : n° 108794 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] contour
[Termes IGN] convergence
[Termes IGN] filtrage numérique d'image
[Termes IGN] image à haute résolution
[Termes IGN] itération
[Termes IGN] segmentation d'image
[Termes IGN] seuillageRésumé : (auteur) Variational methods, which have been tremendously successful in image segmentation, work by minimizing a given objective functional. The objective functional usually consists of a fidelity term and a regularization term. Because objective functionals may vary from different types of images, developing an efficient, simple, and general numerical method to minimize them has become increasingly vital. However, many existing methods are model-based, converge relatively slowly, or involve complicated techniques. In this paper, we develop a novel iterative convolution–thresholding method (ICTM) that is simple, efficient, and applicable to a wide range of variational models for image segmentation. In ICTM, the interface between two different segment domains is implicitly represented by the characteristic functions of domains. The fidelity term is usually written into a linear functional of the characteristic functions, and the regularization term is approximated by a functional of characteristic functions in terms of heat kernel convolution. This allows us to design an iterative convolution–thresholding method to minimize the approximate energy. The method has the energy-decaying property, and thus the unconditional stability is theoretically guaranteed. Numerical experiments show that the method is simple, easy to implement, robust, and applicable to various image segmentation models. Numéro de notice : A2022-779 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.patcog.2022.108794 Date de publication en ligne : 14/05/2022 En ligne : https://doi.org/10.1016/j.patcog.2022.108794 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101857
in Pattern recognition > vol 130 (October 2022) . - n° 108794[article]Invariant structure representation for remote sensing object detection based on graph modeling / Zicong Zhu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
[article]
Titre : Invariant structure representation for remote sensing object detection based on graph modeling Type de document : Article/Communication Auteurs : Zicong Zhu, Auteur ; Xian Sun, Auteur ; Wenhui Diao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5625217 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage numérique d'image
[Termes IGN] granularité d'image
[Termes IGN] graphe
[Termes IGN] invariantRésumé : (auteur) Due to the characteristics of vertical orthophoto imaging, the apparent structural features of the object in the remote sensing (RS) image are relatively stable, such as the cross-shaped structure of the aircraft and the rectangular structure of the vehicle. Compared with the traditional visual features, using these features is conducive to improving the accuracy of object detection. However, there are few studies on such characteristics. In this article, we systematically study the invariant structural features of remote sensing objects and propose a graph focusing aggregation network (GFA-Net) to represent the structural features of remote sensing objects. Among them, in view of the problem that traditional convolutional neural networks (CNNs) are sensitive to the changes in rotation, scale, and other factors, which makes it difficult to extract structural features, we propose the graph focusing process (GFP) based on the idea of graph convolution. Analysis and experiments show that graph structure has significant advantages over Euclidean feature space under CNN in expressing such structural features. In order to realize the end-to-end efficient training of the above model, we design a graph aggregation network (GAN) to update the weight of nodes. We verify the effectiveness of our method on the proposed multitask datasets aircraft component segmentation dataset (ACSD) and the large-scale Fine-grAined object recognItion in high-Resolution RS imagery (FAIR1M). Experiments conducted on the object detection datasets of large-scale Dataset for Object deTection in Aerial images (DOTA) and HRSC2016 prove that the proposed method is superior to the current state-of-the-art (SOTA) method. Numéro de notice : A2022-560 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3181686 Date de publication en ligne : 09/06/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3181686 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101186
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 6 (June 2022) . - n° 5625217[article]Meta-learning based hyperspectral target detection using siamese network / Yulei Wang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
[article]
Titre : Meta-learning based hyperspectral target detection using siamese network Type de document : Article/Communication Auteurs : Yulei Wang, Auteur ; Xi Chen, Auteur ; Fengchao Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5527913 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] détection de cible
[Termes IGN] espace euclidien
[Termes IGN] filtrage numérique d'image
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal siamois
[Termes IGN] tripletRésumé : (auteur) When predicting data for which limited supervised information is available, hyperspectral target detection methods based on deep transfer learning expect that the network will not require considerable retraining to generalize to unfamiliar application contexts. Meta-learning is an effective and practical framework for solving this problem in deep learning. This article proposes a new meta-learning based hyperspectral target detection using Siamese network (MLSN). First, a deep residual convolution feature embedding module is designed to embed spectral vectors into the Euclidean feature space. Then, the triplet loss is used to learn the intraclass similarity and interclass dissimilarity between spectra in embedding feature space by using the known labeled source data on the designed three-channel Siamese network for meta-training. The learned meta-knowledge is updated with the prior target spectrum through a designed two-channel Siamese network to quickly adapt to the new detection task. It should be noted that the parameters and structure of the deep residual convolution embedding modules of each channel in the Siamese network are identical. Finally, the spatial information is combined, and the detection map of the two-channel Siamese network is processed by the guiding image filtering and morphological closing operation, and a final detection result is obtained. Based on the experimental analysis of six real hyperspectral image datasets, the proposed MLSN has shown its excellent comprehensive performance. Numéro de notice : A2022-381 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3169970 Date de publication en ligne : 22/04/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3169970 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100649
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 4 (April 2022) . - n° 5527913[article]Improving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns / Lâmân Lelégard (2022)
Titre : Improving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns Type de document : Article/Communication Auteurs : Lâmân Lelégard , Auteur ; Arnaud Le Bris , Auteur ; Sébastien Giordano , Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3 Projets : HIATUS / Giordano, Sébastien Conférence : ISPRS 2022, Commission 3, 24th ISPRS Congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 1217 - 1222 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] contraste local
[Termes IGN] correction radiométrique
[Termes IGN] fenêtre (informatique)
[Termes IGN] filtre de Wallis
[Termes IGN] morphologie mathématiqueRésumé : (auteur) An orthophotomosaic is as a single image that can be layered on a map. It is produced from a set of aerial images impaired by radiometric inhomogeneity mostly due to atmospheric phenomena, like hotspot, haze or high altitude clouds shadows as well as the camera itself, like lens vignetting. These create some unsightly radiometric inhomogeneity in the mosaic that could be corrected by using a local adaptive filter, also named Wallis filter. Yet this solution leads to a significant loss of contrast at small scales. This current work introduces two elementary studies. In a first time, in order to quantify the loss of contrast due to the use of Wallis filter, a simple multi-scale score is proposed based on mathematical morphology operations. In a second time, an optimal window size for the filter is identified by considering some systematic radiometric behaviours in the images forming the mosaic through Principal Component Analysis (PCA). These two elementary studies are preliminary steps leading to a method of radiometric correction combining Wallis filtering and PCA. Numéro de notice : C2022-015 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2022-1217-2022 Date de publication en ligne : 31/05/2022 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1217-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100841 Mapping temperate forest tree species using dense Sentinel-2 time series / Jan Hemmerling in Remote sensing of environment, vol 267 (December-15 2021)
[article]
Titre : Mapping temperate forest tree species using dense Sentinel-2 time series Type de document : Article/Communication Auteurs : Jan Hemmerling, Auteur ; Dirk Pflugmacher, Auteur ; Patrick Hostert, Auteur Année de publication : 2021 Article en page(s) : n° 112743 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte de la végétation
[Termes IGN] espèce végétale
[Termes IGN] Europe centrale
[Termes IGN] filtrage numérique d'image
[Termes IGN] forêt tempérée
[Termes IGN] image Sentinel-MSI
[Termes IGN] série temporelleRésumé : (auteur) Precise information on tree species composition is critical for forest management and conservation, but mapping tree species with satellite data over large areas is still a challenge. Since 2017, Sentinel-2A/B provide multi-spectral time series with global coverage at an unprecedented spatial and temporal resolution. This is a new opportunity for mapping tree species over large areas that has not yet been fully explored. Because of the high spatial and temporal resolution, Sentinel-2 time series improve the characterization of vegetation phenology and canopy structure, parameters that are intrinsically linked to tree species. The objective of this study was to test the utility of a Sentinel-2 time-series based approach for mapping tree species in a temperate forest region in Central Europe. Using stand-wise forest inventory data for single species stands we assess how well main and minor tree species can be mapped, and if the addition of environmental variables and spatial texture metrics improves the classification accuracy. Our time series approach utilizes all available Sentinel-2 observations and an ensemble of radial basis convolution filters to build cloud-free 5-day time series for each spectral band. The time series are then used as input features to classify seventeen tree species. Our results show the potential of Sentinel-2 time-series based classification, but they also show the challenges associated with mapping a diverse portfolio of tree species. Accuracy of the nine main species, with an area proportion greater than 0.5%, ranged between 98.9% and 66.8%, which is promising for a large area. Adding detailed environmental data and texture metrics to the spectral model only marginally increased the accuracy of a few minor tree species. Overall, the eight minor tree species with area proportions less than 0.5% were most strongly affected by classification errors. Although the absolute mapped area of minor species correlated well with the estimated reference area, the small class areas of minor species lead to high classification errors in relative terms. Mapping minor tree species is challenging for statistical reasons (i.e., class imbalance, small sample size and class variance). Using all available Sentinel-2 data allows building dense time series at high spatial resolution that are mandatory for improved tree species mapping. We were able to show that the spectral time series is the prime explanatory information, even when complementing our analyses with texture information and various environmental data. The results suggest that with the applied data harmonization approach precise regional tree species mapping is feasible. Numéro de notice : A2021-939 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112743 Date de publication en ligne : 13/10/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112743 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99748
in Remote sensing of environment > vol 267 (December-15 2021) . - n° 112743[article]Unsupervised self-adaptive deep learning classification network based on the optic nerve microsaccade mechanism for unmanned aerial vehicle remote sensing image classification / Ming Cong in Geocarto international, vol 36 n° 18 ([01/10/2021])PermalinkA high-resolution satellite DEM filtering method assisted with building segmentation / Yihui Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 6 (June 2021)PermalinkLifting scheme-based sparse density feature extraction for remote sensing target detection / Ling Tian in Remote sensing, vol 13 n° 9 (May-1 2021)PermalinkVectorization of historical maps using deep edge filtering and closed shape extraction / Yizi Chen (2021)PermalinkHigh-resolution remote sensing image scene classification via key filter bank based on convolutional neural network / Fengpeng Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)PermalinkPost‐filtering with surface orientation constraints for stereo dense image matching / Xu Huang in Photogrammetric record, vol 35 n° 171 (September 2020)PermalinkBayesian inversion of convolved hidden Markov models with applications in reservoir prediction / Torstein Fjeldstad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)PermalinkContextual filtering methods based on the subbands and subspaces decomposition of complex SAR interferograms / Saoussen Belhadj-Aissa in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol 12 n° 12 (December 2019)PermalinkImplementing Moran eigenvector spatial filtering for massively large georeferenced datasets / Daniel A. Griffith in International journal of geographical information science IJGIS, vol 33 n° 9 (September 2019)PermalinkLand cover mapping at very high resolution with rotation equivariant CNNs : Towards small yet accurate models / Diego Marcos in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)PermalinkNovel fusion approach on automatic object extraction from spatial data: case study Worldview-2 and TOPO5000 / Umut Gunes Sefercik in Geocarto international, vol 33 n° 10 (October 2018)PermalinkA fully automatic approach to register mobile mapping and airborne imagery to support the correction of plateform trajectories in GNSS-denied urban areas / Phillipp Jende in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)PermalinkAn (almost) automated process to track the Martians dunes : ac.GetPreciseShifts / Arthur Coqué (2018)PermalinkLearning and transferring deep joint spectral–spatial features for hyperspectral classification / Jingxiang Yang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)PermalinkLearning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks / Shaohui Mei in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)PermalinkSimultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks / Rasha Alshehhi in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)PermalinkSelf-taught feature learning for hyperspectral image classification / Ronald Kemker in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)PermalinkDeep feature extraction and classification of hyperspectral images based on convolutional neural networks / Yushi Chen in IEEE Transactions on geoscience and remote sensing, vol 54 n° 10 (October 2016)PermalinkImproved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas / Xiaoqian Zhao in ISPRS Journal of photogrammetry and remote sensing, vol 117 (July 2016)PermalinkA new adaptive method to filter terrestrial laser scanner point clouds using morphological filters and spectral information to conserve surface micro-topography / Emilio Rodríguez-Caballero in ISPRS Journal of photogrammetry and remote sensing, vol 117 (July 2016)Permalink