Descripteur
Documents disponibles dans cette catégorie (436)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Flood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 (2022)
[article]
Titre : Flood susceptibility mapping using meta-heuristic algorithms Type de document : Article/Communication Auteurs : Alireza Arabameri, Auteur ; Amir Seyed Danesh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 949 - 974 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme génétique
[Termes IGN] base de données localisées
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Google Earth
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] optimisation par essaim de particules
[Termes IGN] SAGA GIS
[Termes IGN] séparateur à vaste marge
[Termes IGN] traitement de données localisées
[Termes IGN] vulnérabilité
[Termes IGN] zone à risqueRésumé : (auteur) Flood is a common global natural hazard, and detailed flood susceptibility maps for specific watersheds are important for flood management measures. We compute the flood susceptibility map for the Kaiser watershed in Iran using machine learning models such as support vector machine (SVM), Particle swarm optimization (PSO), and genetic algorithm (GA) along with ensembles (PSO-GA and SVM-GA). The application of such machine learning models in flood susceptibility assessment and mapping is analyzed, and future research suggestions are presented. The model of flood susceptibility model was constructed based on fifteen causatives: slope, slope aspect, elevation, plan curvature, land use, and land cover, normalize differences vegetation index (NDVI), convergence index (CI), topographical wetness index (TWI), topographic positioning Index (TPI), drainage density (DD), distance to stream, terrain ruggedness index (TRI), terrain surface texture (TST), geology and stream power index (SPI) and flood inventory data which later is divided by 70% for training the model and 30% for validated the model. The model output was evaluated through sensitivity, specificity, accuracy, precision, Cohen Kappa, F-score, and receiver operating curve (ROC). The evaluation of flood susceptibility mapping through the receiver operating curve method along with flood density shows robust results from support vector machine (0.839), particle swarm optimization (0.851), genetic algorithm (0.874), SVM-GA (0.886), and PSO-GA (0.902). Compared have done with some methods commonly used in this susceptibility assessment. A high-quality, informative database is essential for the classification of flood types in flood susceptibility mapping that is very important and helpful to improve the model performances. The performance of the ensemble PSO-GA is better than that of the machine learning model, yielding a high degree of accuracy (AUC-0.902%). Our approach, therefore, provides a novel method for flood susceptibility studies in other watersheds. Numéro de notice : A2022-300 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/19475705.2022.2060138 Date de publication en ligne : 11/04/2022 En ligne : https://doi.org/10.1080/19475705.2022.2060138 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100383
in Geomatics, Natural Hazards and Risk > vol 13 (2022) . - pp 949 - 974[article]Génération d’un jeu de données d’entraînement et mise en oeuvre d’une architecture de détection par deep learning des numéros de parcelles sur les plans du cadastre Napoléonien / Tiecoumba Ibrahim Tamela (2022)
Titre : Génération d’un jeu de données d’entraînement et mise en oeuvre d’une architecture de détection par deep learning des numéros de parcelles sur les plans du cadastre Napoléonien Type de document : Mémoire Auteurs : Tiecoumba Ibrahim Tamela, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 68 p. Format : 21 x 30 cm Note générale : Bibliographie
Mémoire de Master PPMD Photogrammétrie, Positionnement et Mesure de DéformationLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] cadastre napoléonien
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] colorimétrie
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] manuscrit
[Termes IGN] parcelle cadastrale
[Termes IGN] planche cadastrale
[Termes IGN] reconnaissance de caractèresIndex. décimale : MPPMD Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation Résumé : (auteur) Le laboratoire Géomatique et Foncier est un laboratoire du Conservatoire National des Arts et Métiers (CNAM). Le laboratoire mène des recherches sur deux axes principaux à savoir la géomatique et le droit et l’analyse de l’action publique. C’est dans le cadre de la recherche en géomatique, le laboratoire a initié, pour l’amélioration de sa chaîne GeoVectoMoCad (chaîne de vectorisation, Géoréférencement et Mosaïquage du cadastre), un travail sur la reconnaissance de numéros manuscrits sur les planches cadastrales par apprentissage profond. La détection par apprentissage profond, nécessite un jeu de données, similaire aux données que l’on veut étudier et en grandes quantité, pour permettre au réseau d’apprendre avec une partie des données et de faire de bonnes prédictions sur de nouvelles données. Pour cela, nous générons des données synthétiques en extrayant des fonds de cadastre réel sans chiffres, puis nous augmentons la donnée par des transformations et insérons des chiffres de la base de données DIDA. Puis, nous générons un deuxième jeu de données de sous-images extraites directement du cadastre. Enfin, nous appliquons un algorithme de reconnaissance de numéros sur les deux jeux de données. Après avoir appliqué ces algorithmes, nous présentons les résultats qui montrent de bons résultats de détection, mais parfois des problèmes de détection et de reconnaissance. Nous proposons pour terminer des pistes d’amélioration. Note de contenu : Introduction
1- Etat de l'art sur la reconnaissance des chiffres manuscrits des documents anciens
2- Création de jeu de données pour la détection de numéros de parcelles
3- Entrainement et évaluation du modèle sur les données
ConclusionNuméro de notice : 24058 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire masters divers Organisme de stage : Laboratoire de Géomatique et Foncier (ESGT-CNAM) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101964 Documents numériques
en open access
Génération d’un jeu de données... - pdf auteur -Adobe Acrobat PDF A GIS-based landslide susceptibility mapping and variable importance analysis using artificial intelligent training-based methods / Pengxiang Zhao in Remote sensing, vol 14 n° 1 (January-1 2022)
[article]
Titre : A GIS-based landslide susceptibility mapping and variable importance analysis using artificial intelligent training-based methods Type de document : Article/Communication Auteurs : Pengxiang Zhao, Auteur ; Zohreh Masoumi, Auteur ; Maryam Kalantari, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aléa
[Termes IGN] analyse comparative
[Termes IGN] apprentissage profond
[Termes IGN] cartographie des risques
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] effondrement de terrain
[Termes IGN] Iran
[Termes IGN] modèle numérique de surface
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] risque naturel
[Termes IGN] système d'information géographiqueRésumé : (auteur) Landslides often cause significant casualties and economic losses, and therefore landslide susceptibility mapping (LSM) has become increasingly urgent and important. The potential of deep learning (DL) like convolutional neural networks (CNN) based on landslide causative factors has not been fully explored yet. The main target of this study is the investigation of a GIS-based LSM in Zanjan, Iran and to explore the most important causative factor of landslides in the case study area. Different machine learning (ML) methods have been employed and compared to select the best results in the case study area. The CNN is compared with four ML algorithms, including random forest (RF), artificial neural network (ANN), support vector machine (SVM), and logistic regression (LR). To do so, sixteen landslide causative factors have been extracted and their related spatial layers have been prepared. Then, the algorithms were trained with related landslide and non-landslide points. The results illustrate that the five ML algorithms performed suitably (precision = 82.43–85.6%, AUC = 0.934–0.967). The RF algorithm achieves the best result, while the CNN, SVM, the ANN, and the LR have the best results after RF, respectively, in this case study. Moreover, variable importance analysis results indicate that slope and topographic curvature contribute more to the prediction. The results would be beneficial to planning strategies for landslide risk management. Numéro de notice : A2022-056 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/rs14010211 Date de publication en ligne : 04/01/2022 En ligne : https://doi.org/10.3390/rs14010211 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99459
in Remote sensing > vol 14 n° 1 (January-1 2022) . - n° 211[article]Global and climate challenges, graph-based data analysis for multisource information extraction / Morgane Batelier (2022)
Titre : Global and climate challenges, graph-based data analysis for multisource information extraction Type de document : Mémoire Auteurs : Morgane Batelier, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 43 p. Format : 21 x 30 cm Note générale : Bibliographie
Mémoire de fin d'études, cycle des ingénieurs ENSG 3ème année, FRSLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] Arctique, océan
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] glace de mer
[Termes IGN] image hyperspectrale
[Termes IGN] image Sentinel-SAR
[Termes IGN] polarimétrie radar
[Termes IGN] traitement d'image radarIndex. décimale : MPT Mémoires de fin d'études du Master Méthodes physiques en télédétection Résumé : (Auteur) During my end-of-studies internship, I worked on the development of a label propagation algorithm for remote sensing data, using Deep Learning. It was mainly applied to sea ice classification using SAR Sentinel-1 data, and to hyperspectral imaging in order to be effective to multimodal remote sensing. I started by the bibliography, during which we decided with my supervisors the method I was going to work from. Then, I worked on the algorithm implementation that was the longest phase. Finally, the last part of my work was the certification and improvement of the results using different process. Note de contenu : Introduction
1. Remote Sensing in the Arctic
1.1 Challenges of the Arctic
1.2 Sea Ice
2. Label Propagation for Deep Learning
2.1 Preliminaries
2.2 Transductive Propagation Network for Few-shot Learning
3. Multimodal Remote Sensing Data
3.1 Synthetic Aperture Radar
3.2 Hyperspectral Imaging
4. Experimental results
4.1 Datasets
4.2 Improvement Methods
4.3 Discussion and future of the algorithm
ConclusionNuméro de notice : 26935 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : Center for Integrated Remote Sensing and Forecasting for Arctic Operations CIRFA Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102059 Documents numériques
en open access
Global and climate challenges, graph-based data analysis for multisource information extraction - pdf auteurAdobe Acrobat PDF Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles / Nico Lang in Remote sensing of environment, vol 268 (January 2022)
[article]
Titre : Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles Type de document : Article/Communication Auteurs : Nico Lang, Auteur ; Nicolai Kalischek, Auteur ; John Armston, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n* 112760 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] biomasse aérienne
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] estimation bayesienne
[Termes IGN] forme d'onde
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] semis de pointsRésumé : (auteur) NASA's Global Ecosystem Dynamics Investigation (GEDI) is a key climate mission whose goal is to advance our understanding of the role of forests in the global carbon cycle. While GEDI is the first space-based LIDAR explicitly optimized to measure vertical forest structure predictive of aboveground biomass, the accurate interpretation of this vast amount of waveform data across the broad range of observational and environmental conditions is challenging. Here, we present a novel supervised machine learning approach to interpret GEDI waveforms and regress canopy top height globally. We propose a probabilistic deep learning approach based on an ensemble of deep convolutional neural networks (CNN) to avoid the explicit modelling of unknown effects, such as atmospheric noise. The model learns to extract robust features that generalize to unseen geographical regions and, in addition, yields reliable estimates of predictive uncertainty. Ultimately, the global canopy top height estimates produced by our model have an expected RMSE of 2.7 m with low bias. Numéro de notice : A2022-086 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112760 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112760 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99495
in Remote sensing of environment > vol 268 (January 2022) . - n* 112760[article]High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach / Martin Schwartz (2022)PermalinkInteractive semantic segmentation of aerial images with deep neural networks / Gaston Lenczner (2022)PermalinkPermalinkLearning spatio-temporal representations of satellite time series for large-scale crop mapping / Vivien Sainte Fare Garnot (2022)PermalinkPermalinkPermalinkPermalinkPermalinkMLMT-CNN for object detection and segmentation in multi-layer and multi-spectral images / Majedaldein Almahasneh in Machine Vision and Applications, vol 33 n° 1 (January 2022)PermalinkPermalinkModeling of precipitable water vapor from GPS observations using machine learning and tomography methods / Mir Reza Ghaffari Razin in Advances in space research, vol 69 n° 7 (April 2022)PermalinkMonitoring grassland dynamics by exploiting multi-modal satellite image time series / Anatol Garioud (2022)PermalinkMonitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies / Guangqin Song in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)PermalinkPermalinkPermalinkMulti-view urban scene classification with a complementary-information learning model / Wanxuan Geng in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 1 (January 2022)PermalinkOptimization of deep neural networks: A functional perspective with applications in image classification / Simon Roburin (2022)PermalinkPhotogrammetric point clouds: quality assessment, filtering, and change detection / Zhenchao Zhang (2022)PermalinkPredicting AIS reception using tropospheric propagation forecast and machine learning / Zackary Vanche (2022)PermalinkProceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures : EUROSTRUCT 2021. An automated machine learning-based approach for structural novelty detection based on SHM / Nicolas Manzini (2022)Permalink