Descripteur
Documents disponibles dans cette catégorie (436)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Improving human mobility identification with trajectory augmentation / Fan Zhou in Geoinformatica, vol 25 n° 3 (July 2021)
[article]
Titre : Improving human mobility identification with trajectory augmentation Type de document : Article/Communication Auteurs : Fan Zhou, Auteur ; Ruiyang Yin, Auteur ; Goce Trajcevski, Auteur ; Kunpeng Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 453 - 483 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] itinéraire
[Termes IGN] mobilité humaine
[Termes IGN] modèle numérique de déplacement
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal récurrent
[Termes IGN] utilisateurRésumé : (auteur) Many location-based social networks (LBSNs) applications such as customized Point-Of-Interest (POI) recommendation, preference-based trip planning, travel time estimation, etc., involve an important task of understanding human trajectory patterns. In particular, identifying and linking trajectories to users who generate them – a problem called Trajectory-User Linking (TUL) – has become a focus of many recent works. TUL is usually studied as a multi-class classification problem and has gained recent attention because: (1) the number of labels/classes (i.e., users) is way larger than the number of motion patterns among various trajectories; and (2) the location-based trajectory data, especially the check-ins – i.e., events of reporting a location at particular Point of Interest (POI) with known semantics – are often extremely sparse. Towards addressing these challenges, we introduce a Trajectory Generative Adversarial Network (TGAN) as an approach to enable learning users motion patterns and location distribution, and to eventually identify human mobility. TGAN consists of two jointly trained neural networks, playing a Minimax game to (iteratively) optimize both components. The first one is the generator, learning trajectory representation by a Recurrent Neural Network (RNN) based model, aiming at fitting the underlying trajectory distribution of a particular individual and generate synthetic trajectories with intrinsic invariance and global coherence. The second one is the discriminator – a Convolutional Neural Network (CNN) based model that discriminates the generated trajectory from the real ones and provides guidance to train the generator model. We demonstrate that the above two models can be well tuned together to improve the TUL performance, while achieving superior accuracy when compared to existing approaches. Numéro de notice : A2021-972 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-019-00378-7 Date de publication en ligne : 29/08/2019 En ligne : https://doi.org/10.1007/s10707-019-00378-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100390
in Geoinformatica > vol 25 n° 3 (July 2021) . - pp 453 - 483[article]Machine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices / Linchuan Yang in Annals of GIS, vol 27 n° 3 (July 2021)
[article]
Titre : Machine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices Type de document : Article/Communication Auteurs : Linchuan Yang, Auteur ; Yuan Liang, Auteur ; Qing Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 273 - 284 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de la valeur
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] bien immobilier
[Termes IGN] boosting adapté
[Termes IGN] Chine
[Termes IGN] Extreme Gradient Machine
[Termes IGN] inférence
[Termes IGN] logement
[Termes IGN] transport publicRésumé : (auteur) The adoption of bus rapid transit (BRT) systems has gained worldwide popularity over the past several decades. China is no exception as it has long been aiming at promoting public transportation. Prior studies have provided extensive evidence that BRT has substantial effects on house prices with traditional econometric techniques, such as hedonic pricing models. However, few of those investigations have discussed the non-linear relationship between BRT and house prices. Using the Xiamen data, this study employs a machine learning technique, namely the gradient boosting decision tree (GBDT), to scrutinize the non-linear relationship between BRT and house prices. This study documents a positive association between accessibility to BRT stations and house prices and a negative association between proximity to the BRT corridor and house prices. Moreover, it suggests a non-linear relationship between BRT and house prices and indicates that GBDT has more substantial predictive power than hedonic pricing models. Numéro de notice : A2021-629 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/19475683.2021.1906746 Date de publication en ligne : 27/03/2021 En ligne : https://doi.org/10.1080/19475683.2021.1906746 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98270
in Annals of GIS > vol 27 n° 3 (July 2021) . - pp 273 - 284[article]A multi-layer perceptron neural network to mitigate the interference of time synchronization attacks in stationary GPS receivers / N. Orouji in GPS solutions, vol 25 n° 3 (July 2021)
[article]
Titre : A multi-layer perceptron neural network to mitigate the interference of time synchronization attacks in stationary GPS receivers Type de document : Article/Communication Auteurs : N. Orouji, Auteur ; M. R. Mosavi, Auteur Année de publication : 2021 Article en page(s) : Article 84 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] décalage d'horloge
[Termes IGN] horloge du récepteur
[Termes IGN] méthode robuste
[Termes IGN] Perceptron multicouche
[Termes IGN] précision des données
[Termes IGN] récepteur GPS
[Termes IGN] station GPS
[Termes IGN] synchronisationRésumé : (Auteur) Accurate timing is one of the key features of the Global Positioning System (GPS), which is employed in many critical infrastructures. Any imprecise time measurement in GPS-based structures, such as smart power grids, economic activities, and communication towers, can lead to disastrous results. The vulnerability of the stationary GPS receivers to the time synchronization attacks (TSAs) jeopardizes the GPS timing precision and trust level. In the past few years, studies suggested the adoption of estimators to follow the authentic trend of the clock offset information under attack conditions. However, the estimators would lose track of the authentic signal without proper knowledge of the signal characteristics. Therefore, a multi-layer perceptron neural network (MLP NN) is proposed to follow the trend of the data. The main difference between the proposed method and typical estimators is the reliance of the network on the training information consisting of signal features. The proposed MLP NN performance has been evaluated through two real-world datasets and two well-known types of TSA. The root mean square error results exhibit an improvement of at least six times compared to other conventional and state-of-art methods. Numéro de notice : A2021-331 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-021-01124-z Date de publication en ligne : 05/04/2021 En ligne : https://doi.org/10.1007/s10291-021-01124-z Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97501
in GPS solutions > vol 25 n° 3 (July 2021) . - Article 84[article]Multisensor data fusion for cloud removal in global and all-season Sentinel-2 imagery / Patrick Ebel in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
[article]
Titre : Multisensor data fusion for cloud removal in global and all-season Sentinel-2 imagery Type de document : Article/Communication Auteurs : Patrick Ebel, Auteur ; Andrea Meraner, Auteur ; Michael Schmitt, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5866 - 5878 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection des nuages
[Termes IGN] données multicapteurs
[Termes IGN] image Sentinel-MSI
[Termes IGN] nuage
[Termes IGN] reconstruction d'image
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) The majority of optical observations acquired via spaceborne Earth imagery are affected by clouds. While there is numerous prior work on reconstructing cloud-covered information, previous studies are, oftentimes, confined to narrowly defined regions of interest, raising the question of whether an approach can generalize to a diverse set of observations acquired at variable cloud coverage or in different regions and seasons. We target the challenge of generalization by curating a large novel data set for training new cloud removal approaches and evaluate two recently proposed performance metrics of image quality and diversity. Our data set is the first publically available to contain a global sample of coregistered radar and optical observations, cloudy and cloud-free. Based on the observation that cloud coverage varies widely between clear skies and absolute coverage, we propose a novel model that can deal with either extreme and evaluate its performance on our proposed data set. Finally, we demonstrate the superiority of training models on real over synthetic data, underlining the need for a carefully curated data set of real observations. To facilitate future research, our data set is made available online. Numéro de notice : A2021-529 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3024744 Date de publication en ligne : 02/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3024744 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97980
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 5866 - 5878[article]Pedestrian fowl prediction in open public places using graph convolutional network / Menghang Liu in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)
[article]
Titre : Pedestrian fowl prediction in open public places using graph convolutional network Type de document : Article/Communication Auteurs : Menghang Liu, Auteur ; Luning Li, Auteur ; Qiang Li, Auteur Année de publication : 2021 Article en page(s) : n° 455 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] espace public
[Termes IGN] flux
[Termes IGN] modèle de simulation
[Termes IGN] navigation pédestre
[Termes IGN] planification urbaine
[Termes IGN] réseau neuronal de graphes
[Termes IGN] Shenzhen
[Termes IGN] variation temporelleRésumé : (auteur) Open public places, such as pedestrian streets, parks, and squares, are vulnerable when the pedestrians thronged into the sidewalks. The crowd count changes dynamically over time with various external factors, such as surroundings, weekends, and peak hours, so it is essential to predict the accurate and timely crowd count. To address this issue, this study introduces graph convolutional network (GCN), a network-based model, to predict the crowd flow in a walking street. Compared with other grid-based methods, the model is capable of directly processing road network graphs. Experiments show the GCN model and its extension STGCN consistently and significantly outperform other five baseline models, namely HA, ARIMA, SVM, CNN and LSTM, in terms of RMSE, MAE and R2. Considering the computation efficiency, the standard GCN model was selected to predict the crowd. The results showed that the model obtains superior performances with higher prediction precision on weekends and peak hours, of which R2 are above 0.9, indicating the GCN model can capture the pedestrian features in the road network effectively, especially during the periods with massive crowds. The results will provide practical references for city managers to alleviate road congestion and help pedestrians make smarter planning and save travel time. Numéro de notice : A2021-550 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10070455 Date de publication en ligne : 02/07/2021 En ligne : https://doi.org/10.3390/ijgi10070455 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98073
in ISPRS International journal of geo-information > vol 10 n° 7 (July 2021) . - n° 455[article]Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space / Min Wu in The Visual Computer, vol 37 n° 7 (July 2021)PermalinkRole of maximum entropy and citizen science to study habitat suitability of jacobin cuckoo in different climate change scenarios / Priyinka Singh in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)PermalinkSemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images / Daifeng Peng in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)PermalinkThree-dimensional reconstruction of single input image based on point cloud / Yu Hou in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 7 (July 2021)PermalinkUsing machine learning to map Western Australian landscapes for mineral exploration / Thomas Albrecht in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)PermalinkMarrying deep learning and data fusion for accurate semantic labeling of Sentinel-2 images / Guillemette Fonteix in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)PermalinkRoadside tree extraction and diameter estimation with MMS lidar by using point-cloud image / Genki Takahashi in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)PermalinkA framework for classification of volunteered geographic data based on user’s need / Nazila Mohammadi in Geocarto international, vol 36 n° 11 ([15/06/2021])PermalinkAn incremental isomap method for hyperspectral dimensionality reduction and classification / Yi Ma in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 6 (June 2021)PermalinkAn innovative and automated method for characterizing wood defects on trunk surfaces using high-density 3D terrestrial LiDAR data / Van-Tho Nguyen in Annals of Forest Science, vol 78 n° 2 (June 2021)PermalinkApplication of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery / Sikdar M. M. Rasel in Geocarto international, vol 36 n° 10 ([01/06/2021])PermalinkA combined drought monitoring index based on multi-sensor remote sensing data and machine learning / Hongzhu Han in Geocarto international, vol 36 n° 10 ([01/06/2021])PermalinkDeep learning in denoising of micro-computed tomography images of rock samples / Mikhail Sidorenko in Computers & geosciences, vol 151 (June 2021)PermalinkDirect analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia / Peter Kitin in Annals of Forest Science, vol 78 n° 2 (June 2021)PermalinkEfficient image dataset classification difficulty estimation for predicting deep-learning accuracy / Florian Scheidegger in The Visual Computer, vol 37 n° 6 (June 2021)PermalinkEvaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities / Jingjing Zhou in Remote sensing, vol 13 n° 11 (June-1 2021)PermalinkMask R-CNN-based building extraction from VHR satellite data in operational humanitarian action: An example related to Covid-19 response in Khartoum, Sudan / Dirk Tiede in Transactions in GIS, Vol 25 n° 3 (June 2021)PermalinkMulti-modal learning in photogrammetry and remote sensing / Michael Ying Yang in ISPRS Journal of photogrammetry and remote sensing, vol 176 (June 2021)PermalinkMultiscale context-aware ensemble deep KELM for efficient hyperspectral image classification / Bobo Xi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)PermalinkPredicting tree species based on the geometry and density of aerial laser scanning point cloud of treetops / Nina Kranjec in Geodetski vestnik, vol 65 n° 2 (June - August 2021)Permalink