Descripteur
Documents disponibles dans cette catégorie (436)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Prevention of erosion in mountain basins: A spatial-based tool to support payments for forest ecosystem services / Sandro Sacchelli in Journal of forest science, vol 67 n° 6 (July 2021)
[article]
Titre : Prevention of erosion in mountain basins: A spatial-based tool to support payments for forest ecosystem services Type de document : Article/Communication Auteurs : Sandro Sacchelli, Auteur ; Costanza Borghi, Auteur ; Gianluca Grilli, Auteur Année de publication : 2021 Article en page(s) : pp 258 - 271 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] bassin hydrographique
[Termes IGN] érosion hydrique
[Termes IGN] géomorphologie locale
[Termes IGN] gestion forestière
[Termes IGN] réseau neuronal artificiel
[Termes IGN] ruissellement
[Termes IGN] service écosystémique
[Termes IGN] système d'aide à la décision
[Termes IGN] Toscane (Italie)Résumé : (auteur) This paper presents a spatial-based decision support system (DSS) to assist public and private forest managers in the analysis of potential feasibility in payments for forest ecosystem services (PES) for the prevention of soil erosion. The model quantifies the maximum willingness to pay (WTP) of managers of a reservoir to prevent soil loss. The minimum willingness to accept (WTA) of forest owners for the activation of a private market is also computed. The comparison of WTP and WTA identifies the forest area where PES are ideally feasible with additional potential for compensation to enable the schemes. The DSS highlights forest idiosyncrasies as well as local socio-economic and geomorphological characteristics influencing PES suitability at a geographic level. The potential applications and future improvements of the model are also discussed. Numéro de notice : A2021-450 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article DOI : 10.17221/5/2021-JFS Date de publication en ligne : 01/06/2021 En ligne : https://doi.org/10.17221/5/2021-JFS Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97867
in Journal of forest science > vol 67 n° 6 (July 2021) . - pp 258 - 271[article]Resolution enhancement for large-scale land cover mapping via weakly supervised deep learning / Qiutong Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 6 (June 2021)
[article]
Titre : Resolution enhancement for large-scale land cover mapping via weakly supervised deep learning Type de document : Article/Communication Auteurs : Qiutong Yu, Auteur ; Wei Liu, Auteur ; Wesley Nunes Gonçalves, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 405 - 412 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] image Terra-MODIS
[Termes IGN] série temporelleRésumé : (Auteur) Multispectral satellite imagery is the primary data source for monitoring land cover change and characterizing land cover globally. However, the consistency of land cover monitoring is limited by the spatial and temporal resolutions of the acquired satellite images. The public availability of daily high-resolution images is still scarce. This paper aims to fill this gap by proposing a novel spatiotemporal fusion method to enhance daily low spatial resolution land cover mapping using a weakly supervised deep convolutional neural network. We merge Sentinel images and moderate resolution imaging spectroradiometer (MODIS )-derived thematic land cover maps under the application background of massive remote sensing data and the large spatial resolution gaps between MODIS data and Sentinel images. The neural network training was conducted on the public data set SEN12MS, while the validation and testing used ground truth data from the 2020 IEEE Geoscience and Remote Sensing Society data fusion contest. The proposed data fusion method shows that the synthesized land cover map has significantly higher spatial resolution than the corresponding MODIS-derived land cover map. The ensemble approach can be implemented for generating high-resolution time series of satellite images by fusing fine images from Sentinel-1 and -2 and daily coarse images from MODIS. Numéro de notice : A2021-373 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.6.405 Date de publication en ligne : 01/06/2021 En ligne : https://doi.org/10.14358/PERS.87.6.405 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97825
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 6 (June 2021) . - pp 405 - 412[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021061 SL Revue Centre de documentation Revues en salle Disponible Retrieval of ultraviolet diffuse attenuation coefficients from ocean color using the kernel principal components analysis over ocean / Kunpeng Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Retrieval of ultraviolet diffuse attenuation coefficients from ocean color using the kernel principal components analysis over ocean Type de document : Article/Communication Auteurs : Kunpeng Sun, Auteur ; Tinglu Zhang, Auteur ; Shuguo Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 4579 - 4589 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] atténuation
[Termes IGN] couleur de l'océan
[Termes IGN] image Aqua-MODIS
[Termes IGN] image NPP-VIIRS
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] rayonnement ultraviolet
[Termes IGN] régression multipleRésumé : (auteur) Underwater ultraviolet radiation (UVR), which plays a significant role in photobiological and photochemical processes, is one of the key factors in marine ecosystems. A new algorithm KpcaUV, based on kernel principal component analysis (KPCA) and multiple linear regression (MLR), was proposed in this study for the retrieval of the UVR diffuse attenuation coefficient Kd(λ) from remote sensing reflectance Rrs(λ) in the global ocean. KPCA can be applied in all areas that principal components analysis (PCA) can be used. More importantly, KPCA can help mapping data into high dimensions and reducing the nonlinearity between inputs and outputs, which will improve the performance and robustness of algorithms when deriving large dynamic ranges parameters. Compared with SeaUVc, which is one of the most successful Kd(λ) retrieval algorithms in UVR, the results showed that KpcaUV (with R2 : 0.970 and RMSE: 14.0%) performed similar to SeaUVc (with R2 : 0.963 and RMSE: 15.6%) when implemented with high-quality data. Nevertheless, KpcaUV was more robust and consistent than SeaUVc when implemented on the satellite images with different levels of quality control. The RMSD of SeaUVc had a significant reduction from 26.8% (QA ≥ 0.6) to 12.7% (QA = 1.0), and the RMSD of KpcaUV varied less than SeaUVc from 14.6% (QA ≥ 0.6) to 10.1% (QA = 1). Hence, considering its good nonlinear-problem-solving ability and robustness when applied to multiple satellites, KpcaUV proposed by this study can be used to obtain Kd(380) for the continuous observation of the large area. Numéro de notice : A2021-421 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3020294 Date de publication en ligne : 16/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3020294 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97773
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 4579 - 4589[article]Simulating multi-exit evacuation using deep reinforcement learning / Dong Xu in Transactions in GIS, Vol 25 n° 3 (June 2021)
[article]
Titre : Simulating multi-exit evacuation using deep reinforcement learning Type de document : Article/Communication Auteurs : Dong Xu, Auteur ; Xiao Huang, Auteur ; Joseph Mango, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1542-1564 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] apprentissage par renforcement
[Termes IGN] distribution spatiale
[Termes IGN] itinéraire piétionnier
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal profondRésumé : (Auteur) Conventional simulations on multi-exit indoor evacuation focus primarily on how to determine a reasonable exit based on numerous factors in a changing environment. Results commonly include some congested and other under-utilized exits, especially with large numbers of pedestrians. We propose a multi-exit evacuation simulation based on deep reinforcement learning (DRL), referred to as the MultiExit-DRL, which involves a deep neural network (DNN) framework to facilitate state-to-action mapping. The DNN framework applies Rainbow Deep Q-Network (DQN), a DRL algorithm that integrates several advanced DQN methods, to improve data utilization and algorithm stability and further divides the action space into eight isometric directions for possible pedestrian choices. We compare MultiExit-DRL with two conventional multi-exit evacuation simulation models in three separate scenarios: varying pedestrian distribution ratios; varying exit width ratios; and varying open schedules for an exit. The results show that MultiExit-DRL presents great learning efficiency while reducing the total number of evacuation frames in all designed experiments. In addition, the integration of DRL allows pedestrians to explore other potential exits and helps determine optimal directions, leading to a high efficiency of exit utilization. Numéro de notice : A2021-466 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Numéro de périodique nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12738 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1111/tgis.12738 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98085
in Transactions in GIS > Vol 25 n° 3 (June 2021) . - pp 1542-1564[article]Uncertainty management for robust probabilistic change detection from multi-temporal Geoeye-1 imagery / Mahmoud Salah in Applied geomatics, vol 13 n° 2 (June 2021)
[article]
Titre : Uncertainty management for robust probabilistic change detection from multi-temporal Geoeye-1 imagery Type de document : Article/Communication Auteurs : Mahmoud Salah, Auteur Année de publication : 2021 Article en page(s) : pp 261 - 275 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] appariement d'histogramme
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de changement
[Termes IGN] Egypte
[Termes IGN] géoréférencement
[Termes IGN] image à très haute résolution
[Termes IGN] image Geoeye
[Termes IGN] image multitemporelle
[Termes IGN] incertitude des données
[Termes IGN] méthode robuste
[Termes IGN] modèle de Markov caché
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal artificiel
[Termes IGN] utilisation du solRésumé : (auteur) Robust approaches for image change detection (ICD) are essential for a range of large-scale applications. However, the uncertainties involved in such approaches have not been fully addressed. To investigate this problem, this paper proposes a new approach for change detection from multi-temporal very high resolution (VHR) satellite imagery based on uncertainty detection and management. First, two GeoEye-1 images of Giza urban area (Egypt), acquired in 2009 and 2019, have been geographically co-registered and their histograms have been matched. Second, a set of feature attributes have been generated from the co-registered images. Third, the support vector machine (SVM) algorithm has been adopted to classify the data into four classes: building, tree, road, and ground. In this regard, the co-registered images along with the generated attributes have been applied as input data for the SVM to calculate the probability of each pixel belonging to each class. After that, the probability images for both epochs have been compared to model the uncertainty of changes. The uncertainty places are then evaluated to estimate their likelihood of being change or no change. Finally, the obtained results have been compared with manually digitized change detection map. Compared with using the widely used post-classification comparison (PCC) approach, the results suggest that (1) the proposed method has improved the overall accuracy of change detection by 13%; (2) the class-accuracies have been improved by 35.63%; and (3) the achieved accuracies for the proposed approach are less variable. Whereas the standard deviation (SD) of the accuracies obtained for the proposed approach is 6.80, the SD of those obtained for the PCC approach is 35.50. Numéro de notice : A2021-412 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-020-00346-z Date de publication en ligne : 28/10/2020 En ligne : https://doi.org/10.1007/s12518-020-00346-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97737
in Applied geomatics > vol 13 n° 2 (June 2021) . - pp 261 - 275[article]A deep learning model using satellite ocean color and hydrodynamic model to estimate chlorophyll-a concentration / Daeyong Jin in Remote sensing, vol 13 n°10 (May-2 2021)PermalinkAutomatic detection and classification of low-level orographic precipitation processes from space-borne radars using machine learning / Malarvizhi Arulraj in Remote sensing of environment, vol 257 (May 2021)PermalinkEstimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Turkey / Alkan Günlü in Geocarto international, vol 36 n° 8 ([01/05/2021])PermalinkIncreasing efficiency of the robust deformation analysis methods using genetic algorithm and generalised particle swarm optimisation / Mehmed Batilović in Survey review, Vol 53 n° 378 (May 2021)PermalinkLearning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation / Yansheng Li in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)PermalinkLearning from multimodal and multitemporal earth observation data for building damage mapping / Bruno Adriano in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)PermalinkMapping and quantification of the dwarf eelgrass Zostera noltii using a random forest algorithm on a SPOT 7 satellite image / Salma Benmokhtar in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)PermalinkA novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm / Sara Khanbani in Applied geomatics, vol 13 n° 1 (May 2021)PermalinkPerformance evaluation of artificial neural networks for natural terrain classification / Perpetual Hope Akwensi in Applied geomatics, vol 13 n° 1 (May 2021)PermalinkQuality assessment of heterogeneous training data sets for classification of urban area with Landsat imagery / Neema Nicodemus Lyimo in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 5 (May 2021)PermalinkRecurrent neural network for rain estimation using commercial microwave links / Hai Victor Habi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 5 (May 2021)PermalinkSemantic hierarchy emerges in deep generative representations for scene synthesis / Ceyuan Yang in International journal of computer vision, vol 129 n° 5 (May 2021)PermalinkA stacked dense denoising–segmentation network for undersampled tomograms and knowledge transfer using synthetic tomograms / Dimitrios Bellos in Machine Vision and Applications, vol 32 n° 3 (May 2021)PermalinkA Voronoi-based method for land-use optimization using semidefinite programming and gradient descent algorithm / Vorapong Suppakitpaisarn in International journal of geographical information science IJGIS, vol 35 n° 5 (May 2021)PermalinkScalable deep learning to identify brick kilns and aid regulatory capacity / Jihyeon Lee in Proceedings of the National Academy of Sciences of the United States of America PNAS, vol 118 n° 17 (27 April 2021)PermalinkThe delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods / Akhtar Jamil in Geocarto international, vol 36 n° 7 ([15/04/2021])PermalinkUnsupervised multi-level feature extraction for improvement of hyperspectral classification / Qiaoqiao Sun in Remote sensing, vol 13 n° 8 (April-2 2021)PermalinkAnti-cross validation technique for constructing and boosting random subspace neural network ensembles for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 6 ([01/04/2021])PermalinkAutomatic atmospheric correction for shortwave hyperspectral remote sensing data using a time-dependent deep neural network / Jian Sun in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)PermalinkCloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques / Miao Tian in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)Permalink