Descripteur
Documents disponibles dans cette catégorie (561)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
GCN-Denoiser: mesh denoising with graph convolutional networks / Yuefan Shen in ACM Transactions on Graphics, TOG, Vol 41 n° 1 (February 2022)
[article]
Titre : GCN-Denoiser: mesh denoising with graph convolutional networks Type de document : Article/Communication Auteurs : Yuefan Shen, Auteur ; Hongbo Fu, Auteur ; Zhongshuo Du, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 8 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] filtrage du bruit
[Termes IGN] maille triangulaire
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal de graphesRésumé : (auteur) In this article, we present GCN-Denoiser, a novel feature-preserving mesh denoising method based on graph convolutional networks (GCNs). Unlike previous learning-based mesh denoising methods that exploit handcrafted or voxel-based representations for feature learning, our method explores the structure of a triangular mesh itself and introduces a graph representation followed by graph convolution operations in the dual space of triangles. We show such a graph representation naturally captures the geometry features while being lightweight for both training and inference. To facilitate effective feature learning, our network exploits both static and dynamic edge convolutions, which allow us to learn information from both the explicit mesh structure and potential implicit relations among unconnected neighbors. To better approximate an unknown noise function, we introduce a cascaded optimization paradigm to progressively regress the noise-free facet normals with multiple GCNs. GCN-Denoiser achieves the new state-of-the-art results in multiple noise datasets, including CAD models often containing sharp features and raw scan models with real noise captured from different devices. We also create a new dataset called PrintData containing 20 real scans with their corresponding ground-truth meshes for the research community. Our code and data are available at https://github.com/Jhonve/GCN-Denoiser. Numéro de notice : A2022-302 Affiliation des auteurs : non IGN Autre URL associée : vers ArXiv Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1145/3480168 Date de publication en ligne : 09/02/2022 En ligne : https://doi.org/10.1145/3480168 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100373
in ACM Transactions on Graphics, TOG > Vol 41 n° 1 (February 2022) . - n° 8[article]Generating 2m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network / Da He in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)
[article]
Titre : Generating 2m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network Type de document : Article/Communication Auteurs : Da He, Auteur ; Qian Shi, Auteur ; Xiaoping Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102667 Note générale : bibliography Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse infrapixellaire
[Termes IGN] apprentissage profond
[Termes IGN] arbre hors forêt
[Termes IGN] arbre urbain
[Termes IGN] base de données localisées
[Termes IGN] Chine
[Termes IGN] image Sentinel-MSI
[Termes IGN] métropole
[Termes IGN] Pékin (Chine)
[Termes IGN] prise en compte du contexte
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Contrast to the global forest, few trees live in cities but contribute significantly to urban environment and human health. However, the classical satellite-derived land cover/forest cover products with limited resolution are not fine enough for the identification of urban tree, which is usually appeared in small size and intersected with infrastructure. To relieve the dilemma, this study developed an urban tree specific sub-pixel mapping (SPM) architecture with deep learning approach, which aimed to generate 2m fine-scale urban tree cover product from 10 m Sentinel-2 images for large-scale area of 34 metropolises in China. The proposed approach has remarkable reconstruction ability for delineating the contextual characteristic of the urban tree patterns, and reliable generalization ability to large-scale area. In addition, this study creates a large-volume urban tree cover dataset (UTCD) with 0.13 billion urban tree samples at 2 m resolution, which fills the deficiency of standard dataset in urban tree cover research field. Quantitative analysis of our products was conducted on two typical study sites of Beijing and Wuhan. The results show that our products recover averagely more than 58.72% of urban tree covers that have been underestimated in the existing land cover/forest cover products, and outperforms the state-of-the-art approach both visually and quantitatively, by averagely 11.31% improvement in overall accuracy. From our annual products during 2016–2020, we found an evolution characteristic of urban tree cover: it is more stable in developed cities like Beijing, while more fluctuated in developing cities like Wuhan, and the alteration are usually concentrated at the outer-ring of downtown, which may be caused by the municipal planning and the land development of real estate industry. Numéro de notice : A2022-073 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2021.102667 En ligne : https://doi.org/10.1016/j.jag.2021.102667 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99438
in International journal of applied Earth observation and geoinformation > vol 106 (February 2022) . - n° 102667[article]A geographically weighted artificial neural network / Julian Haguenauer in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
[article]
Titre : A geographically weighted artificial neural network Type de document : Article/Communication Auteurs : Julian Haguenauer, Auteur ; Marco Helbich, Auteur Année de publication : 2022 Article en page(s) : pp 215 - 235 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] analyse de sensibilité
[Termes IGN] Autriche
[Termes IGN] coût
[Termes IGN] évaluation foncière
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] régression géographiquement pondérée
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal artificielRésumé : (auteur) While recent developments have extended geographically weighted regression (GWR) in many directions, it is usually assumed that the relationships between the dependent and the independent variables are linear. In practice, however, it is often the case that variables are nonlinearly associated. To address this issue, we propose a geographically weighted artificial neural network (GWANN). GWANN combines geographical weighting with artificial neural networks, which are able to learn complex nonlinear relationships in a data-driven manner without assumptions. Using synthetic data with known spatial characteristics and a real-world case study, we compared GWANN with GWR. While the results for the synthetic data show that GWANN performs better than GWR when the relationships within the data are nonlinear and their spatial variance is high, the results based on the real-world data demonstrate that the performance of GWANN can also be superior in a practical setting. Numéro de notice : A2022-162 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1871618 Date de publication en ligne : 08/02/2021 En ligne : https://doi.org/10.1080/13658816.2021.1871618 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99785
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 215 - 235[article]GisGCN: a visual graph-based framework to match geographical areas through time / Margarita Khokhlova in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
[article]
Titre : GisGCN: a visual graph-based framework to match geographical areas through time Type de document : Article/Communication Auteurs : Margarita Khokhlova , Auteur ; Nathalie Abadie , Auteur ; Valérie Gouet-Brunet , Auteur ; Liming Chen, Auteur Année de publication : 2022 Projets : Alegoria / Gouet-Brunet, Valérie Article en page(s) : n° 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attribut géomètrique
[Termes IGN] attribut sémantique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] entité géographique
[Termes IGN] image aérienne
[Termes IGN] réseau sémantiqueRésumé : (auteur) Historical visual sources are particularly useful for reconstructing the successive states of the territory in the past and for analysing its evolution. However, finding visual sources covering a given area within a large mass of archives can be very difficult if they are poorly documented. In the case of aerial photographs, most of the time, this task is carried out by solely relying on the visual content of the images. Convolutional Neural Networks are capable to capture the visual cues of the images and match them to each other given a sufficient amount of training data. However, over time and across seasons, the natural and man-made landscapes may evolve, making historical image-based retrieval a challenging task. We want to approach this cross-time aerial indexing and retrieval problem from a different novel point of view: by using geometrical and topological properties of geographic entities of the researched zone encoded as graph representations which are more robust to appearance changes than the pure image-based ones. Geographic entities in the vertical aerial images are thought of as nodes in a graph, linked to each other by edges representing their spatial relationships. To build such graphs, we propose to use instances from topographic vector databases and state-of-the-art spatial analysis methods. We demonstrate how these geospatial graphs can be successfully matched across time by means of the learned graph embedding. Numéro de notice : A2022-156 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11020097 Date de publication en ligne : 29/01/2022 En ligne : https://doi.org/10.3390/ijgi11020097 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100316
in ISPRS International journal of geo-information > vol 11 n° 2 (February 2022) . - n° 97[article]GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet / Milad Asgarimehr in Remote sensing of environment, vol 269 (February 2022)
[article]
Titre : GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet Type de document : Article/Communication Auteurs : Milad Asgarimehr, Auteur ; Caroline Arnold, Auteur ; Tobias Weigel, Auteur ; Chris Ruf, Auteur ; Jens Wickert, Auteur Année de publication : 2022 Article en page(s) : n° 112801 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] apprentissage profond
[Termes IGN] modèle numérique
[Termes IGN] réflectométrie par GNSS
[Termes IGN] réseau neuronal convolutif
[Termes IGN] vent
[Termes IGN] vitesseRésumé : (auteur) GNSS Reflectometry (GNSS-R) is a novel remote sensing technique for the monitoring of geophysical parameters using reflected GNSS signals from the Earth's surface. Ocean wind speed monitoring is the main objective of the recently launched Cyclone GNSS (CyGNSS), a GNSS-R constellation of eight microsatellites, launched in late 2016. In this study, the capability of deep learning, especially, for an operational wind speed data derivation from the measured Delay-Doppler Maps (DDMs) is characterized. CyGNSSnet is based on convolutional layers for the feature extraction from bistatic radar cross section (BRCS) DDMs, along with fully connected layers for processing ancillary technical and higher-level input parameters. The best architecture is determined on a validation set and is evaluated over a completely blind dataset from a different time span than that of the training data to validate the generality of the model for operational usage. After a data quality control, CyGNSSnet results in an RMSE of 1.36 m/s leading to a significant improvement by 28% in comparison to the officially operational retrieval algorithm. The RMSE is the lowest among those seen in the literature for any conventional or machine learning-based algorithm. The benefits of the convolutional layers, the advantages and weaknesses of the model are discussed. CyGNSSnet offers efficient processing of GNSS-R measurements for high-quality global ocean winds. Numéro de notice : A2022-079 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.rse.2021.112801 Date de publication en ligne : 23/11/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112801 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99764
in Remote sensing of environment > vol 269 (February 2022) . - n° 112801[article]Object recognition algorithm based on optimized nonlinear activation function-global convolutional neural network / Feng-Ping An in The Visual Computer, vol 38 n° 2 (February 2022)PermalinkPlanning of commercial thinnings using machine learning and airborne Lidar data / Tauri Arumäe in Forests, vol 13 n° 2 (February 2022)PermalinkRecurrent origin–destination network for exploration of human periodic collective dynamics / Xiaojian Chen in Transactions in GIS, vol 26 n° 1 (February 2022)PermalinkA robust nonrigid point set registration framework based on global and intrinsic topological constraints / Guiqiang Yang in The Visual Computer, vol 38 n° 2 (February 2022)PermalinkSiamese Adversarial Network for image classification of heavy mineral grains / Huizhen Hao in Computers & geosciences, vol 159 (February 2022)PermalinkSpatiotemporal temperature fusion based on a deep convolutional network / Xuehan Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 2 (February 2022)PermalinkSynergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images / Alireza Hamedianfar in Geocarto international, vol 37 n° 3 ([01/02/2022])Permalink3D modeling of urban area based on oblique UAS images - An end-to-end pipeline / Valeria-Ersilia Oniga in Remote sensing, vol 14 n° 2 (January-2 2022)PermalinkAutomatic extraction of damaged houses by earthquake based on improved YOLOv5: A case study in Yangbi / Yafei Jing in Remote sensing, vol 14 n° 2 (January-2 2022)PermalinkVariable selection for estimating individual tree height using genetic algorithm and random forest / Evandro Nunes Miranda in Forest ecology and management, vol 504 (January-15 2022)Permalink