Descripteur
Documents disponibles dans cette catégorie (561)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Development of object detectors for satellite images by deep learning / Alissa Kouraeva (2022)
Titre : Development of object detectors for satellite images by deep learning Type de document : Mémoire Auteurs : Alissa Kouraeva, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 57 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire d'ingénieur 3e année, Cycle PPMD Photogrammétrie, Positionnement et Mesure de DéformationLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] angle d'incidence
[Termes IGN] apprentissage profond
[Termes IGN] détection du bâti
[Termes IGN] image aérienne
[Termes IGN] image Pléiades-HR
[Termes IGN] image Pléiades-Neo
[Termes IGN] jeu de données
[Termes IGN] OpenStreetMap
[Termes IGN] réalité de terrain
[Termes IGN] recalage d'imageMots-clés libres : Frame Field Learning algorithm Index. décimale : MPPMD Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation Résumé : (auteur) With various uses cases in different sectors - marine, cartography, defense - object detection in satellite images is at the heart of image processing methods. This study aims to test existing building detection algorithms and improve them with the final goal being a precise cartography of buildings for 3D reconstruction with a high level of details. The Polygonization by Frame Field Learning algorithm is tested on different types of images: aerial images (50cm resolution), satellite images with 50cm (Pleiades) and 30cm (Pleiades Neo) resolutions. The ground truth is either already provided (Digitanie) or has to be retrieved from open access databases (OSM or BD TOPO IGN). Some problems of ground truth overlap appear in Pleiades neo images due to the relative precision in positioning of different data and also due to the incidence angle, that provides a greater revisiting capability. A re-implementation of the Frame Field Learning algorithm with the PyTorch Lightning framework is done in this study, with different experiments conducted concerning the configuration of the algorithm. Note de contenu : Introduction
1- Data
2- Methods
3- Results and discussion
ConclusionNuméro de notice : 24052 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : Airbus Defence and Space Geo SA Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101926
Titre : Domain adaptation for urban scene segmentation Type de document : Thèse/HDR Auteurs : Antoine Saporta, Auteur ; Matthieu Cord, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2022 Importance : 147 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de Sorbonne Université, spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] entropie
[Termes IGN] Mapillary
[Termes IGN] navigation autonome
[Termes IGN] réseau antagoniste génératif
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) This thesis tackles some of the scientific locks of perception systems based on neural networks for autonomous vehicles. This dissertation discusses domain adaptation, a class of tools aiming at minimizing the need for labeled data. Domain adaptation allows generalization to so-called target data that share structures with the labeled so-called source data allowing supervision but nevertheless following a different statistical distribution. First, we study the introduction of privileged information in the source data, for instance, depth labels. The proposed strategy, BerMuDA, bases its domain adaptation on a multimodal representation obtained by bilinear fusion, modeling complex interactions between segmentation and depth. Next, we examine self-supervised learning strategies in domain adaptation, relying on selecting predictions on the unlabeled target data, serving as pseudo-labels. We propose two new selection criteria: first, an entropic criterion with ESL; then, with ConDA, using an estimate of the true class probability. Finally, the extension of adaptation scenarios to several target domains as well as in a continual learning framework is proposed. Two approaches are presented to extend traditional adversarial methods to multi-target domain adaptation: Multi-Dis. and MTKT. In a continual learning setting for which the target domains are discovered sequentially and without rehearsal, the proposed CTKT approach adapts MTKT to this new problem to tackle catastrophic forgetting. Note de contenu : 1- Introduction
2- Unsupervised domain adaptation
3- Leveraging priviledge information for unsupervised domain adaptation
4- Estimating and exploiting confident pseudo-labels for self-training
5- Adaptation to multiple domains
6- ConclusionNuméro de notice : 24079 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Sorbonne Université : 2022 Organisme de stage : Institut des Systèmes Intelligents et de Robotique DOI : sans En ligne : https://theses.hal.science/tel-03886201 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102213 Estimating aboveground biomass in dense Hyrcanian forests by the use of Sentinel-2 data / Fardin Moradi in Forests, vol 13 n° 1 (January 2022)
[article]
Titre : Estimating aboveground biomass in dense Hyrcanian forests by the use of Sentinel-2 data Type de document : Article/Communication Auteurs : Fardin Moradi, Auteur ; Ali Asghar Darvishsefat, Auteur ; Manizheh Rajab Pourrahmati, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] Carpinus betulus
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] image Sentinel-MSI
[Termes IGN] Iran
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificielNuméro de notice : A2022-080 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13010104 Date de publication en ligne : 12/01/2022 En ligne : https://doi.org/10.3390/f13010104 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99472
in Forests > vol 13 n° 1 (January 2022) . - n° 104[article]Évaluation de la qualité des données géographiques d'OpenStreetMap à l'aide des méthodes d'apprentissage automatique : cas de la République de Djibouti / Ibrahim Maidaneh Abdi (2022)
Titre : Évaluation de la qualité des données géographiques d'OpenStreetMap à l'aide des méthodes d'apprentissage automatique : cas de la République de Djibouti Type de document : Thèse/HDR Auteurs : Ibrahim Maidaneh Abdi , Auteur ; Ana-Maria Olteanu-Raimond , Directeur de thèse Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2022 Importance : 232 p. Note générale : bibliographie
École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)Langues : Français (fre) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] apprentissage automatique
[Termes IGN] Djibouti
[Termes IGN] données localisées des bénévoles
[Termes IGN] données localisées numériques
[Termes IGN] OpenStreetMap
[Termes IGN] qualité des donnéesIndex. décimale : THESE Thèses et HDR Résumé : (auteur) La qualité des données de la base OpenStreetMap (OSM) peut être évaluée en comparant les données d'OSM avec les données d'une base de données géographiques de référence. Cependant, en l'absence d'une telle base de référence (cas de Djibouti), la précision spatiale de ces données n'est pas connue. L'objectif de nos travaux est de mettre en place une méthode permettant de déterminer la qualité d'un jeu de données issue d'OSM sans le comparer avec une base de référence. Pour cela, nous cherchons à établir un lien statistique entre des mesures extrinsèques de qualité (calculées en confrontant les données OSM avec des données de référence), et des indicateurs intrinsèques de qualité (calculés en se basant uniquement sur les objets à évaluer), pour disposer d'une estimation des mesures extrinsèques de qualité d'un jeu de données OSM pour lequel il n'y aurait pas de référence. Nous implémentons un modèle d'apprentissage supervisé, amélioré au fil des méthodes d'apprentissages en partant par une régression multiple LASSO vers une classification de type Random Forest en passant par une étude d'autocorrélation spatiale pour aboutir sur une étude de la transférabilité du modèle de classification sur d'autres zones d'études. Le modèle de régression que nous calculons permet d'expliquer 30 % de la variance sur les mesures de qualité d'objets OSM de type bâtiments. Et si l'on agrège des bâtiments dans un voisinage défini, on améliore le score de variance expliquée par la régression jusqu'à 42 %. Quant avec la classification, notre modèle parvient à détecter une mauvaise qualité de saisie de bâtiments à 81,5 % d'AUC. Enfin, les résultats préliminaires testés sur deux zones d'études, montrent que le modèle d'apprentissage se transfère assez bien sur la nouvelle zone d'étude. Numéro de notice : 14332 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE Nature : Thèse française Note de thèse : thèse de doctorat : Sciences de l’information géographique : Gustave Eiffel : 2022 Organisme de stage : LASTIG (IGN) nature-HAL : Thèse DOI : sans Date de publication en ligne : 28/03/2023 En ligne : https://theses.hal.science/tel-04048674 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102984 Exploring data fusion for multi-object detection for intelligent transportation systems using deep learning / Amira Mimouna (2022)
Titre : Exploring data fusion for multi-object detection for intelligent transportation systems using deep learning Type de document : Thèse/HDR Auteurs : Amira Mimouna, Auteur ; Abdelmalik Taleb-Ahmed, Directeur de thèse ; Najoua Essoukri Ben Amara, Directeur de thèse Editeur : Valenciennes : Université polytechnique Hauts-de-France Année de publication : 2022 Note générale : bibliographie
Thèse de doctorat pour obtenir le grade de Docteur de l'Université polytechnique Hauts-de-France et l'INSA Hauts-de-France et l'Université de Sousse, spécialité Electronique, Acoustique et TélécommunicationsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] détection d'objet
[Termes IGN] données publiques
[Termes IGN] entropie
[Termes IGN] profil d'obstacle
[Termes IGN] segmentation d'image
[Termes IGN] système de transport intelligent
[Termes IGN] trafic urbain
[Termes IGN] transformation en ondelettes
[Termes IGN] vision par ordinateur
[Termes IGN] zone d'intérêtIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Building reliable environment perception systems is a crucial task for autonomous driving, especially in dense traffic areas. Researching in this field is evolving increasingly. However, we are at the beginning of a research pathway towards a future generation of intelligent transportation systems. In fact, challenging conditions in real-world driving circumstances, infrastructure monitoring, and accurate real-time system response, are the predominant concerns when developing such systems. Recent improvements and breakthroughs in scene understanding for intelligent transportation systems have been mainly based on deep learning and the fusion of different modalities. In this context, firstly, we introduce OLIMP : A heterOgeneous MuLtimodal Dataset for Advanced EnvIronMent Perception . This is the first public, multimodal and synchronized dataset that includes Ultra Wide-Band (UWB) radar data, acoustic data, narrowband radar data and images. OLIMP comprises 407 scenes and 47,354 synchronized frames, including four categories: pedestrians, cyclists, cars and trams. The dataset presents various challenges related to dense urban traffic such as cluttered environments and differentweather conditions. To demonstrate the usefulness of the introduced dataset, we propose, afterwards, a fusion framework that combines the four modalities for multi object detection. The obtained results are promising and spur for future research. In short range settings, UWB radars represent a promising technology for building reliable obstacle detection systems as they are robust to environmental conditions. However, UWB radars suffer from a segmentation challenge: localizing relevant Regions Of Interests (ROIs) within its signals. Therefore, we put froward a segmentation approach to detect ROIs in an environment perception-dedicated UWB radar as a third contribution. Specifically, we implement a differential entropy analysis to detect ROIs. The obtained results show higher performance in terms of obstacle detection compared to state-of-theart techniques, as well as stable robustness even with low amplitude signals. Subsequently, we propose a novel framework that exploits Recurrent Neural Networks (RNNs) with UWB signals for multiple road obstacle detection as a deep learning-based approach. Features are extracted from the time-frequency domain using the discrete wavelet transform and are forwarded to the Long short-term memory (LSTM) network. The obtained results show that the LSTM-based system outperforms the other implemented related techniques in terms of obstacle detection. Note de contenu : 1- Introduction
2- Environment perception system: State of the art
3- OLIMP: A heterogeneous multimodal dataset for advanced environment perception
4- Multiple object detectors using UWB signals
5- Conclusions and perspectivesNuméro de notice : 15289 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Electronique, Acoustique et Télécommunications : Université polytechnique Hauts-de-France : 2022 Organisme de stage : Institut d'électronique, de microélectronique et de nanotechnologie DOI : sans En ligne : https://hal.science/tel-03522730 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101520 Flood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 (2022)PermalinkGénération d’un jeu de données d’entraînement et mise en oeuvre d’une architecture de détection par deep learning des numéros de parcelles sur les plans du cadastre Napoléonien / Tiecoumba Ibrahim Tamela (2022)PermalinkA GIS-based landslide susceptibility mapping and variable importance analysis using artificial intelligent training-based methods / Pengxiang Zhao in Remote sensing, vol 14 n° 1 (January-1 2022)PermalinkGlobal and climate challenges, graph-based data analysis for multisource information extraction / Morgane Batelier (2022)PermalinkGlobal canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles / Nico Lang in Remote sensing of environment, vol 268 (January 2022)PermalinkHigh-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach / Martin Schwartz (2022)PermalinkInteractive semantic segmentation of aerial images with deep neural networks / Gaston Lenczner (2022)PermalinkPermalinkLearning spatio-temporal representations of satellite time series for large-scale crop mapping / Vivien Sainte Fare Garnot (2022)PermalinkPermalink