Descripteur
Documents disponibles dans cette catégorie (285)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Predicting user activity intensity using geographic interactions based on social media check-in data / Jing Li in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
[article]
Titre : Predicting user activity intensity using geographic interactions based on social media check-in data Type de document : Article/Communication Auteurs : Jing Li, Auteur ; Wenyue Guo, Auteur ; Haiyan Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 555 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] interaction spatiale
[Termes IGN] mobilité humaine
[Termes IGN] modèle non linéaire
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau neuronal récurrent
[Termes IGN] utilisateurRésumé : (auteur) Predicting user activity intensity is crucial for various applications. However, existing studies have two main problems. First, as user activity intensity is nonstationary and nonlinear, traditional methods can hardly fit the nonlinear spatio-temporal relationships that characterize user mobility. Second, user movements between different areas are valuable, but have not been utilized for the construction of spatial relationships. Therefore, we propose a deep learning model, the geographical interactions-weighted graph convolutional network-gated recurrent unit (GGCN-GRU), which is good at fitting nonlinear spatio-temporal relationships and incorporates users’ geographic interactions to construct spatial relationships in the form of graphs as the input. The model consists of a graph convolutional network (GCN) and a gated recurrent unit (GRU). The GCN, which is efficient at processing graphs, extracts spatial features. These features are then input into the GRU, which extracts their temporal features. Finally, the GRU output is passed through a fully connected layer to obtain the predictions. We validated this model using a social media check-in dataset and found that the geographical interactions graph construction method performs better than the baselines. This indicates that our model is appropriate for fitting the complex nonlinear spatio-temporal relationships that characterize user mobility and helps improve prediction accuracy when considering geographic flows. Numéro de notice : A2021-588 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10080555 Date de publication en ligne : 17/08/2021 En ligne : https://doi.org/10.3390/ijgi10080555 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98206
in ISPRS International journal of geo-information > vol 10 n° 8 (August 2021) . - n° 555[article]Scalable surface reconstruction with Delaunay-Graph neural networks / Raphaël Sulzer in Computer graphics forum, vol 40 n° 5 (2021)
[article]
Titre : Scalable surface reconstruction with Delaunay-Graph neural networks Type de document : Article/Communication Auteurs : Raphaël Sulzer , Auteur ; Loïc Landrieu , Auteur ; Renaud Marlet, Auteur ; Bruno Vallet , Auteur Année de publication : 2021 Projets : BIOM / Vallet, Bruno Conférence : SGP 2021, Symposium on Geometry Processing 12/07/2021 14/07/2021 Toronto Ontario - Canada open access proceedings Article en page(s) : pp 157 - 167 Note générale : bibliographie
The presentation of this work at SGP 2021 is available at https://youtu.be/KIrCDGhS10oLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme Graph-Cut
[Termes IGN] apprentissage profond
[Termes IGN] prise en compte du contexte
[Termes IGN] reconstruction d'objet
[Termes IGN] réseau neuronal de graphes
[Termes IGN] semis de points
[Termes IGN] tétraèdre
[Termes IGN] triangulation de DelaunayRésumé : (auteur) We introduce a novel learning-based, visibility-aware, surface reconstruction method for large-scale, defect-laden point clouds. Our approach can cope with the scale and variety of point cloud defects encountered in real-life Multi-View Stereo (MVS) acquisitions. Our method relies on a 3D Delaunay tetrahedralization whose cells are classified as inside or outside the surface by a graph neural network and an energy model solvable with a graph cut. Our model, making use of both local geometric attributes and line-of-sight visibility information, is able to learn a visibility model from a small amount of synthetic training data and generalizes to real-life acquisitions. Combining the efficiency of deep learning methods and the scalability of energy-based models, our approach outperforms both learning and non learning-based reconstruction algorithms on two publicly available reconstruction benchmarks. Numéro de notice : A2021-400 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/cgf14364 En ligne : https://doi.org/10.1111/cgf.14364 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98219
in Computer graphics forum > vol 40 n° 5 (2021) . - pp 157 - 167[article]Unsupervised representation high-resolution remote sensing image scene classification via contrastive learning convolutional neural network / Fengpeng Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 8 (August 2021)
[article]
Titre : Unsupervised representation high-resolution remote sensing image scene classification via contrastive learning convolutional neural network Type de document : Article/Communication Auteurs : Fengpeng Li, Auteur ; Jiabao Li, Auteur ; Wei Han, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 577 - 591 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal
[Termes IGN] grande échelle
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] moyenne échelle
[Termes IGN] petite échelle
[Termes IGN] régression linéaire
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Inspired by the outstanding achievement of deep learning, supervised deep learning representation methods for high-spatial-resolution remote sensing image scene classification obtained state-of-the-art performance. However, supervised deep learning representation methods need a considerable amount of labeled data to capture class-specific features, limiting the application of deep learning-based methods while there are a few labeled training samples. An unsupervised deep learning representation, high-resolution remote sensing image scene classification method is proposed in this work to address this issue. The proposed method, called contrastive learning, narrows the distance between positive views: color channels belonging to the same images widens the gaps between negative view pairs consisting of color channels from different images to obtain class-specific data representations of the input data without any supervised information. The classifier uses extracted features by the convolutional neural network (CNN)-based feature extractor with labeled information of training data to set space of each category and then, using linear regression, makes predictions in the testing procedure. Comparing with existing unsupervised deep learning representation high-resolution remote sensing image scene classification methods, contrastive learning CNN achieves state-of-the-art performance on three different scale benchmark data sets: small scale RSSCN7 data set, midscale aerial image data set, and large-scale NWPU-RESISC45 data set. Numéro de notice : A2021-670 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.8.577 Date de publication en ligne : 01/08/2021 En ligne : https://doi.org/10.14358/PERS.87.8.577 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98806
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 8 (August 2021) . - pp 577 - 591[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021081 SL Revue Centre de documentation Revues en salle Disponible Improving human mobility identification with trajectory augmentation / Fan Zhou in Geoinformatica, vol 25 n° 3 (July 2021)
[article]
Titre : Improving human mobility identification with trajectory augmentation Type de document : Article/Communication Auteurs : Fan Zhou, Auteur ; Ruiyang Yin, Auteur ; Goce Trajcevski, Auteur ; Kunpeng Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 453 - 483 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] itinéraire
[Termes IGN] mobilité humaine
[Termes IGN] modèle numérique de déplacement
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal récurrent
[Termes IGN] utilisateurRésumé : (auteur) Many location-based social networks (LBSNs) applications such as customized Point-Of-Interest (POI) recommendation, preference-based trip planning, travel time estimation, etc., involve an important task of understanding human trajectory patterns. In particular, identifying and linking trajectories to users who generate them – a problem called Trajectory-User Linking (TUL) – has become a focus of many recent works. TUL is usually studied as a multi-class classification problem and has gained recent attention because: (1) the number of labels/classes (i.e., users) is way larger than the number of motion patterns among various trajectories; and (2) the location-based trajectory data, especially the check-ins – i.e., events of reporting a location at particular Point of Interest (POI) with known semantics – are often extremely sparse. Towards addressing these challenges, we introduce a Trajectory Generative Adversarial Network (TGAN) as an approach to enable learning users motion patterns and location distribution, and to eventually identify human mobility. TGAN consists of two jointly trained neural networks, playing a Minimax game to (iteratively) optimize both components. The first one is the generator, learning trajectory representation by a Recurrent Neural Network (RNN) based model, aiming at fitting the underlying trajectory distribution of a particular individual and generate synthetic trajectories with intrinsic invariance and global coherence. The second one is the discriminator – a Convolutional Neural Network (CNN) based model that discriminates the generated trajectory from the real ones and provides guidance to train the generator model. We demonstrate that the above two models can be well tuned together to improve the TUL performance, while achieving superior accuracy when compared to existing approaches. Numéro de notice : A2021-972 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-019-00378-7 Date de publication en ligne : 29/08/2019 En ligne : https://doi.org/10.1007/s10707-019-00378-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100390
in Geoinformatica > vol 25 n° 3 (July 2021) . - pp 453 - 483[article]A multi-layer perceptron neural network to mitigate the interference of time synchronization attacks in stationary GPS receivers / N. Orouji in GPS solutions, vol 25 n° 3 (July 2021)
[article]
Titre : A multi-layer perceptron neural network to mitigate the interference of time synchronization attacks in stationary GPS receivers Type de document : Article/Communication Auteurs : N. Orouji, Auteur ; M. R. Mosavi, Auteur Année de publication : 2021 Article en page(s) : Article 84 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] décalage d'horloge
[Termes IGN] horloge du récepteur
[Termes IGN] méthode robuste
[Termes IGN] Perceptron multicouche
[Termes IGN] précision des données
[Termes IGN] récepteur GPS
[Termes IGN] station GPS
[Termes IGN] synchronisationRésumé : (Auteur) Accurate timing is one of the key features of the Global Positioning System (GPS), which is employed in many critical infrastructures. Any imprecise time measurement in GPS-based structures, such as smart power grids, economic activities, and communication towers, can lead to disastrous results. The vulnerability of the stationary GPS receivers to the time synchronization attacks (TSAs) jeopardizes the GPS timing precision and trust level. In the past few years, studies suggested the adoption of estimators to follow the authentic trend of the clock offset information under attack conditions. However, the estimators would lose track of the authentic signal without proper knowledge of the signal characteristics. Therefore, a multi-layer perceptron neural network (MLP NN) is proposed to follow the trend of the data. The main difference between the proposed method and typical estimators is the reliance of the network on the training information consisting of signal features. The proposed MLP NN performance has been evaluated through two real-world datasets and two well-known types of TSA. The root mean square error results exhibit an improvement of at least six times compared to other conventional and state-of-art methods. Numéro de notice : A2021-331 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-021-01124-z Date de publication en ligne : 05/04/2021 En ligne : https://doi.org/10.1007/s10291-021-01124-z Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97501
in GPS solutions > vol 25 n° 3 (July 2021) . - Article 84[article]Pedestrian fowl prediction in open public places using graph convolutional network / Menghang Liu in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)PermalinkA framework for classification of volunteered geographic data based on user’s need / Nazila Mohammadi in Geocarto international, vol 36 n° 11 ([15/06/2021])PermalinkPrevention of erosion in mountain basins: A spatial-based tool to support payments for forest ecosystem services / Sandro Sacchelli in Journal of forest science, vol 67 n° 6 (July 2021)PermalinkSimulating multi-exit evacuation using deep reinforcement learning / Dong Xu in Transactions in GIS, Vol 25 n° 3 (June 2021)PermalinkUncertainty management for robust probabilistic change detection from multi-temporal Geoeye-1 imagery / Mahmoud Salah in Applied geomatics, vol 13 n° 2 (June 2021)PermalinkEstimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Turkey / Alkan Günlü in Geocarto international, vol 36 n° 8 ([01/05/2021])PermalinkPerformance evaluation of artificial neural networks for natural terrain classification / Perpetual Hope Akwensi in Applied geomatics, vol 13 n° 1 (May 2021)PermalinkRecurrent neural network for rain estimation using commercial microwave links / Hai Victor Habi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 5 (May 2021)PermalinkA convolutional neural network approach to predict non‐permissive environments from moderate‐resolution imagery / Seth Goodman in Transactions in GIS, Vol 25 n° 2 (April 2021)PermalinkGraph convolutional networks by architecture search for PolSAR image classification / Hongying Liu in Remote sensing, vol 13 n° 7 (April-1 2021)Permalink