Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique générale > arbre (flore)
arbre (flore)Synonyme(s)arbre (végétation)Voir aussi |
Documents disponibles dans cette catégorie (436)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Point cloud data processing optimization in spectral and spatial dimensions based on multispectral Lidar for urban single-wood extraction / Shuo Shi in ISPRS International journal of geo-information, vol 12 n° 3 (March 2023)
[article]
Titre : Point cloud data processing optimization in spectral and spatial dimensions based on multispectral Lidar for urban single-wood extraction Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Xingtao Tang, Auteur ; Bowen Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse spectrale
[Termes IGN] arbre urbain
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Houston (Texas)
[Termes IGN] interpolation
[Termes IGN] réflectance spectrale
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Lidar can effectively obtain three-dimensional information on ground objects. In recent years, lidar has developed rapidly from single-wavelength to multispectral hyperspectral imaging. The multispectral airborne lidar Optech Titan is the first commercial system that can collect point cloud data on 1550, 1064, and 532 nm channels. This study proposes a method of point cloud segmentation in the preprocessed intensity interpolation process to solve the problem of inaccurate intensity at the boundary during point cloud interpolation. The entire experiment consists of three steps. First, a multispectral lidar point cloud is obtained using point cloud segmentation and intensity interpolation; the spatial dimension advantage of the multispectral point cloud is used to improve the accuracy of spectral information interpolation. Second, point clouds are divided into eight categories by constructing geometric information, spectral reflectance information, and spectral characteristics. Accuracy evaluation and contribution analysis are also conducted through point cloud truth value and classification results. Lastly, the spatial dimension information is enhanced by point cloud drop sampling, the method is used to solve the error caused by airborne scanning and single-tree extraction of urban trees. Classification results showed that point cloud segmentation before intensity interpolation can effectively improve the interpolation and classification accuracies. The total classification accuracy of the data is improved by 3.7%. Compared with the extraction result (377) of single wood without subsampling treatment, the result of the urban tree extraction proved the effectiveness of the proposed method with a subsampling algorithm in improving the accuracy. Accordingly, the problem of over-segmentation is solved, and the final single-wood extraction result (329) is markedly consistent with the real situation of the region. Numéro de notice : A2023-159 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi12030090 Date de publication en ligne : 23/02/2023 En ligne : https://doi.org/10.3390/ijgi12030090 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102852
in ISPRS International journal of geo-information > vol 12 n° 3 (March 2023) . - n° 90[article]Topology-based individual tree segmentation for automated processing of terrestrial laser scanning point clouds / Xin Xu in International journal of applied Earth observation and geoinformation, vol 116 (February 2023)
[article]
Titre : Topology-based individual tree segmentation for automated processing of terrestrial laser scanning point clouds Type de document : Article/Communication Auteurs : Xin Xu, Auteur ; Federico Iuricich, Auteur ; Kim Calders, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103145 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction d'arbres
[Termes IGN] houppier
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] topologieRésumé : (auteur) Terrestrial laser scanning (TLS) is a ground-based approach to rapidly acquire 3D point clouds via Light Detection and Ranging (LiDAR) technologies. Quantifying tree-scale structure from TLS point clouds requires segmentation, yet there is a lack of automated methods available to the forest ecology community. In this work, we consider the problem of segmenting a forest TLS point cloud into individual tree point clouds. Different approaches have been investigated to identify and segment individual trees in a forest point cloud. Typically these methods require intensive parameter tuning and time-consuming user interactions, which has inhibited the application of TLS to large area research. Our goal is to define a new automated segmentation method that lifts these limitations. Our Topology-based Tree Segmentation (TTS) algorithm uses a new topological technique rooted in discrete Morse theory to segment input point clouds into single trees. TTS algorithm identifies distinctive tree structures (i.e., tree bottoms and tops) without user interactions. Tree tops and bottoms are then used to reconstruct single trees using the notion of relevant topological features. This mathematically well-established notion helps distinguish between noise and relevant tree features. To demonstrate the generality of our approach, we present an evaluation using multiple datasets, including different forest types and point densities. We also compare our TTS approach with open-source tree segmentation methods. The experiments show that we achieve a higher segmentation accuracy when performing point-by-point validation. Without expensive user interactions, TTS algorithm is promising for greater usage of TLS point clouds in the forest ecology community, such as fire risk and behavior modeling, estimating tree-level biodiversity structural traits, and above-ground biomass monitoring. Numéro de notice : A2023-129 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103145 Date de publication en ligne : 12/12/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103145 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102517
in International journal of applied Earth observation and geoinformation > vol 116 (February 2023) . - n° 103145[article]Detection of growth change of young forest based on UAV RGB images at single-tree level / Xiaocheng Zhou in Forests, vol 14 n° 1 (January 2023)
[article]
Titre : Detection of growth change of young forest based on UAV RGB images at single-tree level Type de document : Article/Communication Auteurs : Xiaocheng Zhou, Auteur ; Hongyu Wang, Auteur ; Chongcheng Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 141 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Abies (genre)
[Termes IGN] âge du peuplement forestier
[Termes IGN] Chine
[Termes IGN] croissance des arbres
[Termes IGN] détection de changement
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] jeune arbre
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] surveillance forestièreRésumé : (auteur) With the rapid development of Unmanned Aerial Vehicle (UAV) technology, more and more UAVs have been used in forest survey. UAV (RGB) images are the most widely used UAV data source in forest resource management. However, there is some uncertainty as to the reliability of these data when monitoring height and growth changes of low-growing saplings in an afforestation plot via UAV RGB images. This study focuses on an artificial Chinese fir (Cunninghamia lancelota, named as Chinese Fir) young forest plot in Fujian, China. Divide-and-conquer (DAC) and the local maximum (LM) method for extracting seedling height are described in the paper, and the possibility of monitoring young forest growth based on low-cost UAV remote sensing images was explored. Two key algorithms were adopted and compared to extract the tree height and how it affects the young forest at single-tree level from multi-temporal UAV RGB images from 2019 to 2021. Compared to field survey data, the R2 of single saplings’ height extracted from digital orthophoto map (DOM) images of tree pits and original DSM information using a divide-and-conquer method reached 0.8577 in 2020 and 0.9968 in 2021, respectively. The RMSE reached 0.2141 in 2020 and 0.1609 in 2021. The R2 of tree height extracted from the canopy height model (CHM) via the LM method was 0.9462. The RMSE was 0.3354 in 2021. The results demonstrated that the survival rates of the young forest in the second year and the third year were 99.9% and 85.6%, respectively. This study shows that UAV RGB images can obtain the height of low sapling trees through a computer algorithm based on using 3D point cloud data derived from high-precision UAV images and can monitor the growth of individual trees combined with multi-stage UAV RGB images after afforestation. This research provides a fully automated method for evaluating the afforestation results provided by UAV RGB images. In the future, the universality of the method should be evaluated in more afforestation plots featuring different tree species and terrain. Numéro de notice : A2023-115 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f14010141 Date de publication en ligne : 10/01/2023 En ligne : https://doi.org/10.3390/f14010141 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102482
in Forests > vol 14 n° 1 (January 2023) . - n° 141[article]Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography / Ihor Kozak in Urban Forestry & Urban Greening, vol 79 (January 2023)
[article]
Titre : Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography Type de document : Article/Communication Auteurs : Ihor Kozak, Auteur ; Mikhail Popov, Auteur ; Igor Semko, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 127793 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] biomasse aérienne
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] forêt urbaine
[Termes IGN] houppier
[Termes IGN] image hémisphérique
[Termes IGN] Leaf Area Index
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] photographie numérique
[Termes IGN] Pinus sylvestris
[Termes IGN] Pologne
[Termes IGN] semis de points
[Termes IGN] surface terrièreRésumé : (auteur) The article proposes methods for combining Airborne Laser Scanning (ALS) with Digital Hemispherical Photography (DHP) data required by the Urban Forest Biomass (UFB) model to predict the aboveground biomass (AGB) of Scotch pine (Pinus sylvestris L.) in urban forests of Lublin (Poland). The article also demonstrates the potential of ALS and DHP data in urban AGB estimation. ALS and Leaf Area Index (LAI) data were calculated using a voxels-vector approach based on the measurements taken at eight permanent sample plots (PSPs). The research was conducted in 2014 and the prediction was made until 2030. It was found that the determination coefficients (R2) for the Basal Area (BA) of the trees are 0.97, and the BA modeling parameters have a high correlation with those observed in the field (model efficiency (ME) 0.94). 83 % growth trajectory based on the measured BA was appropriately modeled using the UFB model (P > 0.9). The results for AGB show that the degree of fitting and accuracy are greatest for the Monte Carlo (MC) simulation technique based on ALS and DHP data (UBF with ALS and DHP) where R2 = 0.98, RMSE = 2.97 t/ha, MAE = 2.35 t/ha, rRMSE = 1.28 %, which performed better than MC simulation technique without ALS and DHP (UBF without ALS and DHP) where R2 = 0.94, RMSE = 4.58 t/ha, MAE = 3.64 t/ha, rRMSE = 3.29 %. The results indicate that the proposed method based on combining the UFB model, LiDAR and DHP allows us to improve the accuracy of the AGB prediction. Numéro de notice : A2023-023 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ufug.2022.127793 Date de publication en ligne : 23/11/2022 En ligne : https://doi.org/10.1016/j.ufug.2022.127793 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102246
in Urban Forestry & Urban Greening > vol 79 (January 2023) . - n° 127793[article]Tree position estimation from TLS data using hough transform and robust least-squares circle fitting / Maja Michałowska in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)
[article]
Titre : Tree position estimation from TLS data using hough transform and robust least-squares circle fitting Type de document : Article/Communication Auteurs : Maja Michałowska, Auteur ; Jacek Rapinski, Auteur ; Joanna Janicka, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 100863 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] branche (arbre)
[Termes IGN] compensation par moindres carrés
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtrage du bruit
[Termes IGN] géolocalisation
[Termes IGN] méthode robuste
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pologne
[Termes IGN] semis de points
[Termes IGN] transformation de HoughRésumé : (auteur) Forest management and planning require information regarding the current state of the forest. Remote sensing techniques allow to obtain geospatial data, also for the forestry sector. As one of the remote-sensed technologies datasets, Terrestrial Laser Scanning data is widely used to derive detailed information about tree and forest stand parameters. This article presents the combination of circular Hough transform, denoising procedure, and robust least-square circle fitting method to extract stem positions from Terrestrial Laser Scanning data. In the proposed approach, initial tree stems position was detected with circular Hough transform. Then, obtained results were denoised to exclude most non-tree trunk points and analyze three-dimensional data from laser scanning to find exact circular tree stems with a robust least-square circle fitting method. The developed algorithm is effective in obtaining the trees’ geodetic positions from laser scanning data. The results generated in this study can be used as basics for further automatic determination of tree characteristics, such as tree species, height, or crown range. In this study, 94.8% tree stems delineation was generated with a mean accuracy of 87.2%, 1.64 cm of root mean square error for stem position, and 1.15 cm for tree radius measured at ground level. The process conducted in this research can be used to detect other circle-shaped objects, such as lamps or power towers, for which obtaining dense Terrestrial Laser Scanning data is available. The detected positions of these objects can power the geographic information systems or thematic industry systems, where it is necessary to determine the geodetic object position results from legal regulations. Numéro de notice : A2023-018 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rsase.2022.100863 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.1016/j.rsase.2022.100863 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102183
in Remote Sensing Applications: Society and Environment, RSASE > vol 29 (January 2023) . - n° 100863[article]Climate change-induced background tree mortality is exacerbated towards the warm limits of the species ranges / Adrien Taccoen in Annals of Forest Science, vol 79 n° 1 (2022)PermalinkInstance segmentation of standing dead trees in dense forest from aerial imagery using deep learning / Aboubakar Sani-Mohammed in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)PermalinkEvaluation of softwood timber quality: A case study on two silvicultural systems in Central Germany / Kristen Höwler in Forests, vol 13 n° 11 (November 2022)PermalinkGraph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds / Zhilin Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 11 (November 2022)PermalinkLe Parc national de forêts : des patrimoines en devenir / Pierre Clergeot in Géomètre, n° 2207 (novembre 2022)PermalinkCaractériser l’environnement compétitif des arbres : dépassons la surface terrière ! / Thomas Cordonnier in Revue forestière française, vol 73 n° 6 (2021)PermalinkHabitats, agricultural practices, and population dynamics of a threatened species: The European turtle dove in France / Christophe Sauser in Biological Conservation, vol 274 (octobre 2022)PermalinkNovel algorithm based on geometric characteristics for tree branch skeleton extraction from LiDAR point cloud / Jie Yang in Forests, vol 13 n° 10 (October 2022)PermalinkRiparian ecosystems mapping at fine scale: a density approach based on multi-temporal UAV photogrammetric point clouds / Elena Belcore in Remote sensing in ecology and conservation, vol 8 n° 5 (October 2022)PermalinkTree regeneration in models of forest dynamics – Suitability to assess climate change impacts on European forests / Louis A. König in Forest ecology and management, vol 520 (September-15 2022)Permalink