Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique générale > plante ligneuse > arbuste
arbusteVoir aussi |
Documents disponibles dans cette catégorie (12)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Diversity and mean specific leaf area of Mediterranean woody vegetation changes in response to summer drought across a double stress gradient: The role of phenotypic plasticity / Alejandro Carrascosa in Journal of vegetation science, vol 34 n° 2 (April 2023)
[article]
Titre : Diversity and mean specific leaf area of Mediterranean woody vegetation changes in response to summer drought across a double stress gradient: The role of phenotypic plasticity Type de document : Article/Communication Auteurs : Alejandro Carrascosa, Auteur ; Mariola Silvestre, Auteur ; Laura Morgado, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° e13180 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] arbuste
[Termes IGN] climat méditerranéen
[Termes IGN] diagnostic foliaire
[Termes IGN] Espagne
[Termes IGN] facteur édaphique
[Termes IGN] indice foliaire
[Termes IGN] plante ligneuse
[Termes IGN] sécheresse
[Termes IGN] stress hydrique
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : Aim: Many aspects of vegetation response to increased drought remain uncertain but it is expected that phenotypic plasticity may be key to early adaptation of plants to environmental stress. In this work we observe the response of specific leaf area (SLA) of woody shrub vegetation to the summer drought typical of the Mediterranean climate. In addition, to observe the possible interaction between the impact of drought and the environmental characteristics of the ecosystems, communities from different edaphic and structural contexts distributed along the double stress gradient of the Mediterranean mountains (high temperature and low precipitation at low elevation; low temperature and high irradiation at high elevation) have been analysed.
Location: Central Mountain range of the Iberian Peninsula.
Methods: Along the entire altitudinal gradient, 33 shrub communities belonging to different habitat typologies (shrublands, rocky areas, hedgerows, understorey) were sampled before and after the passage of summer, both in 2017 and 2019. A total of 1724 individuals and 15,516 leaves were collected and measured to estimate the mean values and diversity of SLA of each community.
Results: The community-weighted mean and functional divergence have inverse quadratic relationships with the environmental gradient. Shrub communities at both ends of the gradient have low mean SLA values and high functional divergence of this trait. Summer drought implies a generalised decrease in the mean SLA of the communities throughout the gradient, as well as an alteration in functional richness and uniformity. However, the effect of summer drought on the plant community is mediated by the microenvironmental characteristics of its habitat.
Conclusions: Drought acclimatisation of shrub communities through phenotypic plasticity leads to rapid changes in their functional leaf structure. In the long term, our results point to an increase in plant conservative strategies, reduced ecosystem productivity, slower nutrient recycling and the reduction of communities of specific habitats as drought increases.Numéro de notice : A2023-223 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1111/jvs.13180 Date de publication en ligne : 09/03/2023 En ligne : https://doi.org/10.1111/jvs.13180 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103172
in Journal of vegetation science > vol 34 n° 2 (April 2023) . - n° e13180[article]Classification of mediterranean shrub species from UAV point clouds / Juan Pedro Carbonell-Rivera in Remote sensing, vol 14 n° 1 (January-1 2022)
[article]
Titre : Classification of mediterranean shrub species from UAV point clouds Type de document : Article/Communication Auteurs : Juan Pedro Carbonell-Rivera, Auteur ; Jesus Torralba, Auteur ; Javier Estornell, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 199 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] arbuste
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] Espagne
[Termes IGN] Extreme Gradient Machine
[Termes IGN] forêt méditerranéenne
[Termes IGN] image captée par drone
[Termes IGN] incendie de forêt
[Termes IGN] indice de végétation
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de terrain
[Termes IGN] parc naturel
[Termes IGN] photogrammétrie aérienne
[Termes IGN] semis de pointsRésumé : (auteur) Modelling fire behaviour in forest fires is based on meteorological, topographical, and vegetation data, including species’ type. To accurately parameterise these models, an inventory of the area of analysis with the maximum spatial and temporal resolution is required. This study investigated the use of UAV-based digital aerial photogrammetry (UAV-DAP) point clouds to classify tree and shrub species in Mediterranean forests, and this information is key for the correct generation of wildfire models. In July 2020, two test sites located in the Natural Park of Sierra Calderona (eastern Spain) were analysed, registering 1036 vegetation individuals as reference data, corresponding to 11 shrub and one tree species. Meanwhile, photogrammetric flights were carried out over the test sites, using a UAV DJI Inspire 2 equipped with a Micasense RedEdge multispectral camera. Geometrical, spectral, and neighbour-based features were obtained from the resulting point cloud generated. Using these features, points belonging to tree and shrub species were classified using several machine learning methods, i.e., Decision Trees, Extra Trees, Gradient Boosting, Random Forest, and MultiLayer Perceptron. The best results were obtained using Gradient Boosting, with a mean cross-validation accuracy of 81.7% and 91.5% for test sites 1 and 2, respectively. Once the best classifier was selected, classified points were clustered based on their geometry and tested with evaluation data, and overall accuracies of 81.9% and 96.4% were obtained for test sites 1 and 2, respectively. Results showed that the use of UAV-DAP allows the classification of Mediterranean tree and shrub species. This technique opens a wide range of possibilities, including the identification of species as a first step for further extraction of structure and fuel variables as input for wildfire behaviour models. Numéro de notice : A2022-057 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14010199 En ligne : https://doi.org/10.3390/rs14010199 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99462
in Remote sensing > vol 14 n° 1 (January-1 2022) . - n° 199[article]Rapid ecosystem change at the southern limit of the Canadian Arctic, Torngat Mountains National Park / Emma L. Davis in Remote sensing, vol 13 n° 11 (June-1 2021)
[article]
Titre : Rapid ecosystem change at the southern limit of the Canadian Arctic, Torngat Mountains National Park Type de document : Article/Communication Auteurs : Emma L. Davis, Auteur ; Andrew Trant, Auteur ; Robert G. Way, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2085 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arbuste
[Termes IGN] Arctique
[Termes IGN] Canada
[Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection de changement
[Termes IGN] écosystème
[Termes IGN] écotone
[Termes IGN] géostatistique
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle de simulation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] parc naturel national
[Termes IGN] régression logistique
[Termes IGN] surveillance de la végétation
[Termes IGN] toundraRésumé : (auteur) Northern protected areas guard against habitat and species loss but are themselves highly vulnerable to environmental change due to their fixed spatial boundaries. In the low Arctic, Torngat Mountains National Park (TMNP) of Canada, widespread greening has recently occurred alongside warming temperatures and regional declines in caribou. Little is known, however, about how biophysical controls mediate plant responses to climate warming, and available observational data are limited in temporal and spatial scope. In this study, we investigated the drivers of land cover change for the 9700 km2 extent of the park using satellite remote sensing and geostatistical modelling. Random forest classification was used to hindcast and simulate land cover change for four different land cover types from 1985 to 2019 with topographic and surface reflectance imagery (Landsat archive). The resulting land cover maps, in addition to topographic and biotic variables, were then used to predict where future shrub expansion is likely to occur using a binomial regression framework. Land cover hindcasts showed a 235% increase in shrub and a 105% increase in wet vegetation cover from 1985/89 to 2015/19. Shrub cover was highly persistent and displaced wet vegetation in southern, low-elevation areas, whereas wet vegetation expanded to formerly dry, mid-elevations. The predictive model identified both biotic (initial cover class, number of surrounding shrub neighbors), and topographic variables (elevation, latitude, and distance to the coast) as strong predictors of future shrub expansion. A further 51% increase in shrub cover is expected by 2039/43 relative to 2014 reference data. Establishing long-term monitoring plots within TMNP in areas where rapid vegetation change is predicted to occur will help to validate remote sensing observations and will improve our understanding of the consequences of change for biotic and abiotic components of the tundra ecosystem, including important cultural keystone species. Numéro de notice : A2021-442 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13112085 Date de publication en ligne : 26/05/2021 En ligne : https://doi.org/10.3390/rs13112085 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97832
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2085[article]Mask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors / Emilio Guirado in Sensors, vol 21 n° 1 (January 2021)
[article]
Titre : Mask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors Type de document : Article/Communication Auteurs : Emilio Guirado, Auteur ; Javier Blanco-Sacristán, Auteur ; Emilio Rodríguez-Caballero, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 320 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] arbuste
[Termes IGN] capteur optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] image à très haute résolution
[Termes IGN] segmentation d'image
[Termes IGN] service écosystémique
[Termes IGN] surveillance de la végétation
[Termes IGN] zone arideRésumé : (auteur) Vegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology. For this reason, improving segmentation methods and understanding the effect of spatial resolution on segmentation results is key to improve dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in one of the driest areas of Europe. Our results show for the first time that the fusion of the results from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands. Numéro de notice : A2021-157 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21010320 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/s21010320 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97072
in Sensors > vol 21 n° 1 (January 2021) . - n° 320[article]Shrub biomass estimates in former burnt areas using Sentinel 2 images processing and classification / Jose Aranha in Forests, vol 11 n° 5 (May 2020)
[article]
Titre : Shrub biomass estimates in former burnt areas using Sentinel 2 images processing and classification Type de document : Article/Communication Auteurs : Jose Aranha, Auteur ; Teresa Enes, Auteur ; Ana Calvão, Auteur ; Hélder Viana, Auteur Année de publication : 2020 Article en page(s) : 19 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arbuste
[Termes IGN] biomasse
[Termes IGN] classification dirigée
[Termes IGN] gestion forestière
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] modèle de croissance végétale
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Portugal
[Termes IGN] signature spectrale
[Termes IGN] sous-bois
[Termes IGN] système d'information géographique
[Termes IGN] zone sinistréeRésumé : (auteur) Shrubs growing in former burnt areas play two diametrically opposed roles. On the one hand, they protect the soil against erosion, promote rainwater infiltration, carbon sequestration and support animal life. On the other hand, after the shrubs’ density reaches a particular size for the canopy to touch and the shrubs’ biomass accumulates more than 10 Mg ha−1, they create the necessary conditions for severe wild fires to occur and spread. The creation of a methodology suitable to identify former burnt areas and to track shrubs’ regrowth within these areas in a regular and a multi temporal basis would be beneficial. The combined use of geographical information systems (GIS) and remote sensing (RS) supported by dedicated land survey and field work for data collection has been identified as a suitable method to manage these tasks. The free access to Sentinel images constitutes a valuable tool for updating the GIS project and for the monitoring of regular shrubs’ accumulated biomass. Sentinel 2 VIS-NIR images are suitable to classify rural areas (overall accuracy = 79.6% and Cohen’s K = 0.754) and to create normalized difference vegetation index (NDVI) images to be used in association to allometric equations for the shrubs’ biomass estimation (R2 = 0.8984, p-value Numéro de notice : A2020-654 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f11050555 Date de publication en ligne : 14/05/2020 En ligne : https://doi.org/10.3390/f11050555 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96116
in Forests > vol 11 n° 5 (May 2020) . - 19 p.[article]What Is threatening forests in protected areas? A global assessment of deforestation in protected areas, 2001–2018 / Christopher M. Wade in Forests, vol 11 n° 5 (May 2020)PermalinkUsing a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia / Neil Flood in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)PermalinkTesting the generality of below-ground biomass allometry across plant functional types / Keryn I. Paul in Forest ecology and management, vol 432 (15 January 2019)PermalinkResponse of Swiss forests to management and climate change in the last 60 years / Meinrad Küchler in Annals of Forest Science, vol 72 n° 3 (May 2015)PermalinkInfluence of a dense, low-height shrub species on the accuracy of a lidar-derived DEM / Samuel B. Gould in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 5 (May 2013)PermalinkSmall-footprint Lidar estimations of sagebrush canopy characteristics / J. Mitchell in Photogrammetric Engineering & Remote Sensing, PERS, vol 77 n° 5 (May 2011)PermalinkFlore des arbres, arbustes et arbrisseaux, 1. Plaines et collines / René Rol (1975)Permalink