Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique générale > arbre (flore) > tronc
troncSynonyme(s)FûtVoir aussi |
Documents disponibles dans cette catégorie (53)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Individual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads / Raul de Paula Pires in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
[article]
Titre : Individual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads Type de document : Article/Communication Auteurs : Raul de Paula Pires, Auteur ; Kenneth Olofsson, Auteur ; Henrik J. Persson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 211 - 224 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] collecte de données
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lidar mobile
[Termes IGN] route
[Termes IGN] semis de points
[Termes IGN] Suède
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (Auteur) The collection of field-reference data is a key task in remote sensing-based forest inventories. However, traditional methods of collection demand extensive personnel resources. Thus, field-reference data collection would benefit from more automated methods. In this study, we proposed a method for individual tree detection (ITD) and stem attribute estimation based on a car-mounted mobile laser scanner (MLS) operating along forest roads. We assessed its performance in six ranges with increasing mean distance from the roadside. We used a Riegl VUX-1LR sensor operating with high repetition rate, thus providing detailed cross sections of the stems. The algorithm we propose was designed for this sensor configuration, identifying the cross sections (or arcs) in the point cloud and aggregating those into single trees. Furthermore, we estimated diameter at breast height (DBH), stem profiles, and stem volume for each detected tree. The accuracy of ITD, DBH, and stem volume estimates varied with the trees’ distance from the road. In general, the proximity to the sensor of branches 0–10 m from the road caused commission errors in ITD and over estimation of stem attributes in this zone. At 50–60 m from roadside, stems were often occluded by branches, causing omissions and underestimation of stem attributes in this area. ITD’s precision and sensitivity varied from 82.8% to 100% and 62.7% to 96.7%, respectively. The RMSE of DBH estimates ranged from 1.81 cm (6.38%) to 4.84 cm (16.9%). Stem volume estimates had RMSEs ranging from 0.0800 m3 (10.1%) to 0.190 m3 (25.7%), depending on the distance to the sensor. The average proportion of detected reference volume was highly affected by the performance of ITD in the different zones. This proportion was highest from 0 to 10 m (113%), a zone that concentrated most ITD commission errors, and lowest from 50 to 60 m (66.6%), mostly due to the omission errors in this area. In the other zones, the RMSE ranged from 87.5% to 98.5%. These accuracies are in line with those obtained by other state-of-the-art MLS and terrestrial laser scanner (TLS) methods. The car-mounted MLS system used has the potential to collect data efficiently in large-scale inventories, being able to scan approximately 80 ha of forests per day depending on the survey setup. This data collection method could be used to increase the amount of field-reference data available in remote sensing-based forest inventories, improve models for area-based estimations, and support precision forestry development. Numéro de notice : A2022-229 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.004 Date de publication en ligne : 18/03/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.004 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100215
in ISPRS Journal of photogrammetry and remote sensing > vol 187 (May 2022) . - pp 211 - 224[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022051 SL Revue Centre de documentation Revues en salle Disponible 081-2022053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Changes of tree stem biomass in European forests since 1950 / Aleksandr Lebedev in Journal of forest science, vol 68 n° 3 (March 2022)
[article]
Titre : Changes of tree stem biomass in European forests since 1950 Type de document : Article/Communication Auteurs : Aleksandr Lebedev, Auteur ; Valery Kuzmichev, Auteur Année de publication : 2022 Article en page(s) : pp 107 - 115 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse diachronique
[Termes IGN] Betula pendula
[Termes IGN] biomasse forestière
[Termes IGN] densité du bois
[Termes IGN] écosystème forestier
[Termes IGN] Europe (géographie politique)
[Termes IGN] forêt tempérée
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] puits de carbone
[Termes IGN] tronc
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Based on the measurements of the biomass of the stems of 3 699 trees of Scots pine, Norway spruce, and silver birch in Europe since 1950, it has been shown that these tree species show a reduction in biomass and wood density. These results contradict the fact that the volume of wood is directly converted to biomass using the historical values of the conversion rates. From 1950 to 2020 the biomass of 1 m3 of the stem with bark decreased on average by 80 kg (–17%) for Scots pine, by 105 kg (–22%) for Norway spruce and by 92 kg (–15%) for silver birch. The results obtained should be taken into account when assessing the technical properties of wood and estimating carbon sequestration by forest biomass. Since decreasing trends in stem biomass have been identified for several tree species, the phenomenon may have a large degree of generality. Such studies should be continued both at the regional and national level and at the global level. Numéro de notice : A2022-366 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.17221/135/2021-JFS Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.17221/135/2021-JFS Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100587
in Journal of forest science > vol 68 n° 3 (March 2022) . - pp 107 - 115[article]Detection of windthrown tree stems on UAV-orthomosaics using U-Net convolutional networks / Stefan Reder in Remote sensing, vol 14 n° 1 (January-1 2022)
[article]
Titre : Detection of windthrown tree stems on UAV-orthomosaics using U-Net convolutional networks Type de document : Article/Communication Auteurs : Stefan Reder, Auteur ; J.P. Mund, Auteur ; Nicole Albert, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 75 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] branche (arbre)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] dommage forestier causé par facteurs naturels
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image captée par drone
[Termes IGN] orthophotoplan numérique
[Termes IGN] segmentation sémantique
[Termes IGN] tempête
[Termes IGN] troncRésumé : (auteur) The increasing number of severe storm events is threatening European forests. Besides the primary damages directly caused by storms, there are secondary damages such as bark beetle outbreaks and tertiary damages due to negative effects on the market. These subsequent damages can be minimized if a detailed overview of the affected area and the amount of damaged wood can be obtained quickly and included in the planning of clearance measures. The present work utilizes UAV-orthophotos and an adaptation of the U-Net architecture for the semantic segmentation and localization of windthrown stems. The network was pre-trained with generic datasets, randomly combining stems and background samples in a copy–paste augmentation, and afterwards trained with a specific dataset of a particular windthrow. The models pre-trained with generic datasets containing 10, 50 and 100 augmentations per annotated windthrown stems achieved F1-scores of 73.9% (S1Mod10), 74.3% (S1Mod50) and 75.6% (S1Mod100), outperforming the baseline model (F1-score 72.6%), which was not pre-trained. These results emphasize the applicability of the method to correctly identify windthrown trees and suggest the collection of training samples from other tree species and windthrow areas to improve the ability to generalize. Further enhancements of the network architecture are considered to improve the classification performance and to minimize the calculative costs. Numéro de notice : A2022-082 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14010075 En ligne : https://doi.org/10.3390/rs14010075 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99476
in Remote sensing > vol 14 n° 1 (January-1 2022) . - n° 75[article]Estimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data / Nikos Georgopoulos in Remote sensing, vol 13 n° 23 (December-1 2021)
[article]
Titre : Estimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data Type de document : Article/Communication Auteurs : Nikos Georgopoulos, Auteur ; Ioannis Z. Gitas, Auteur ; Alexandra Stefanidou, Auteur ; Lauri Korhonen, Auteur ; Dimitris G. Stavrakoudis, Auteur Année de publication : 2021 Article en page(s) : n° 4827 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Abies (genre)
[Termes IGN] biomasse aérienne
[Termes IGN] capteur multibande
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt inéquienne
[Termes IGN] Grèce
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] montagne
[Termes IGN] Pinophyta
[Termes IGN] régression
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (auteur) Stem biomass is a fundamental component of the global carbon cycle that is essential for forest productivity estimation. Over the last few decades, Light Detection and Ranging (LiDAR) has proven to be a useful tool for accurate carbon stock and biomass estimation in various biomes. The aim of this study was to investigate the potential of multispectral LiDAR data for the reliable estimation of single-tree total and barkless stem biomass (TSB and BSB) in an uneven-aged structured forest with complex topography. Destructive and non-destructive field measurements were collected for a total of 67 dominant and co-dominant Abies borisii-regis trees located in a mountainous area in Greece. Subsequently, two allometric equations were constructed to enrich the reference data with non-destructively sampled trees. Five different regression algorithms were tested for single-tree BSB and TSB estimation using height (height percentiles and bicentiles, max and average height) and intensity (skewness, standard deviation and average intensity) LiDAR-derived metrics: Generalized Linear Models (GLMs), Gaussian Process (GP), Random Forest (RF), Support Vector Regression (SVR) and Extreme Gradient Boosting (XGBoost). The results showcased that the RF algorithm provided the best overall predictive performance in both BSB (i.e., RMSE = 175.76 kg and R2 = 0.78) and TSB (i.e., RMSE = 211.16 kg and R2 = 0.65) cases. Our work demonstrates that BSB can be estimated with moderate to high accuracy using all the tested algorithms, contrary to the TSB, where only three algorithms (RF, SVR and GP) can adequately provide accurate TSB predictions due to bark irregularities along the stems. Overall, the multispectral LiDAR data provide accurate stem biomass estimates, the general applicability of which should be further tested in different biomes and ecosystems. Numéro de notice : A2021-953 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13234827 Date de publication en ligne : 27/11/2021 En ligne : https://doi.org/10.3390/rs13234827 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99955
in Remote sensing > vol 13 n° 23 (December-1 2021) . - n° 4827[article]An innovative and automated method for characterizing wood defects on trunk surfaces using high-density 3D terrestrial LiDAR data / Van-Tho Nguyen in Annals of Forest Science, vol 78 n° 2 (June 2021)
[article]
Titre : An innovative and automated method for characterizing wood defects on trunk surfaces using high-density 3D terrestrial LiDAR data Type de document : Article/Communication Auteurs : Van-Tho Nguyen, Auteur ; Thiéry Constant, Auteur ; Francis Colin, Auteur Année de publication : 2021 Article en page(s) : Article 32 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] détection d'anomalie
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] écorce
[Termes IGN] Fagus sylvatica
[Termes IGN] qualité du bois
[Termes IGN] Quercus sessiliflora
[Termes IGN] segmentation d'image
[Termes IGN] télémétrie laser terrestre
[Termes IGN] troncRésumé : (Auteur) We designed a novel method allowing to automatically detect and measure defects on the surface of trunks including branches, branch scars, and epicormics from terrestrial LiDAR data by using only high-density 3D information. We could automatically detect and measure the defects with a diameter as small as 0.5 cm on either oak (Quercus petraea (Matt.) Liebl.) or beech (Fagus sylvatica L.) trees that display either rough or smooth bark.
Context : Ground-based light detection and ranging (LiDAR) technology describes standing trees with a high level of detail. This provides an opportunity to assess standing tree quality and to use this information in forest inventory. Assuming the availability of a very high level of detail, we could extract information about the surface defects, mainly inherited from past ramification and having a strong impact on wood quality.
Aims : Within the general framework of the development of a computing method able to detect, identify, and quantify the defects on the trunk surface described from 3D data produced by a terrestrial LiDAR, this study focuses on the relevance of the whole process for two tree species with contrasted bark roughness (Quercus petraea (Matt.) Liebl. and Fagus sylvatica L.) in terms of detection, identification of the defects, and comparison with measurements performed manually on the bark surface.
Methods : First, a segmentation algorithm detected singularities on the trunk surface. Next, a Random Forests machine learning algorithm identified the most probable defect type and allowed the elimination of false detections. Finally, we estimated the position, horizontal, and vertical dimensions of each defect from 3D data, and we compared them to those observed directly on the trunk by an operator.
Results : The defects were detected and classified with a high accuracy with an average F1
score (harmonic mean of precision and recall) of 0.74. There were differences in computed and observed defect areas, but a much closer agreement for the number of defects.
Conclusion : The information about the defects present on the trunk surface measured from terrestrial LiDAR data can be used in an automated procedure for grading standing trees or roundwoods.Numéro de notice : A2021-326 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01022-3 Date de publication en ligne : 01/04/2021 En ligne : https://doi.org/10.1007/s13595-020-01022-3 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97484
in Annals of Forest Science > vol 78 n° 2 (June 2021) . - Article 32[article]Towards silviculture guidelines to produce large-sized silver birch (betula pendula roth) logs in Western Europe / Héloïse Dubois in Forests, vol 12 n° 5 (May 2021)PermalinkAssessing the effects of thinning on stem growth allocation of individual Scots pine trees / Ninni Saarinen in Forest ecology and management, vol 474 ([15/10/2020])Permalink3D reconstruction of internal wood decay using photogrammetry and sonic tomography / Junjie Zhang in Photogrammetric record, vol 35 n° 171 (September 2020)PermalinkUnder-canopy UAV laser scanning for accurate forest field measurements / Eric Hyyppä in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)PermalinkDetecting and characterizing downed dead wood using terrestrial laser scanning / Tuomas Yrttimaa in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)PermalinkMeasuring stem diameters with TLS in boreal forests by complementary fitting procedure / Timo P Pitkänen in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)PermalinkReconstructing forest canopy from the 3D triangulations of airborne laser scanning point data for the visualization and planning of forested landscapes / Jari Vauhkonen in Annals of Forest Science, vol 74 n° 1 (March 2017)PermalinkFeasibility of Terrestrial laser scanning for collecting stem volume information from single trees / Ninni Saarinen in ISPRS Journal of photogrammetry and remote sensing, vol 123 (January 2017)PermalinkQuantifying early-seral forest composition with remote sensing / Rayma A Cooley in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 11 (November 2016)PermalinkStem quality assessment in European National Forest Inventories: an opportunity for harmonised reporting? / Michal Bosela in Annals of Forest Science, vol 73 n° 3 (September 2016)Permalink