Descripteur
Documents disponibles dans cette catégorie (414)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A graph-based approach for representing addresses in geocoding / Chen Zhang in Computers, Environment and Urban Systems, vol 100 (March 2023)
[article]
Titre : A graph-based approach for representing addresses in geocoding Type de document : Article/Communication Auteurs : Chen Zhang, Auteur ; Biao He, Auteur ; Renzhong Guo, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101937 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement d'adresses
[Termes IGN] base de données d'adresses
[Termes IGN] géocodage par adresse postale
[Termes IGN] graphe
[Termes IGN] stockage de données
[Termes IGN] toponymeRésumé : (auteur) Addresses, one of the most important geographical reference systems in natural languages, are usually used to search spatial objects in daily life. Geocoding concatenates text with georeferenced coordinates and is an essential middleware service in geographic information applications. Despite its importance, geocoding remains challenging with only text as input, hindering text matching in reference databases without the specific text. To optimize the storage and retrieval of addresses in databases, this work proposes a graph-based approach for representing addresses. The approach clarifies the characteristics of relative concepts, designs a graph structure and identifies modelling strategies. Furthermore, a schema is proposed to perform address matching and toponym disambiguation using an address graph. The model is implemented on a graph database, and experimental tasks are employed to demonstrate its effectiveness. The approach provides a new reference for developers when creating address databases. Numéro de notice : A2023-126 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101937 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101937 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102505
in Computers, Environment and Urban Systems > vol 100 (March 2023) . - n° 101937[article]A geometry-aware attention network for semantic segmentation of MLS point clouds / Jie Wan in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
[article]
Titre : A geometry-aware attention network for semantic segmentation of MLS point clouds Type de document : Article/Communication Auteurs : Jie Wan, Auteur ; Yongyang Xu, Auteur ; Qinjun Qiu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 138 - 161 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] corrélation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] figure géométrique
[Termes IGN] fonction de perte
[Termes IGN] graphe
[Termes IGN] Perceptron multicouche
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Semantic segmentation of mobile laser scanning (MLS) point clouds can provide meaningful 3 D semantic information of urban facilities for various applications. However, it still remains a challenge to extract accurate 3 D semantic information from MLS point cloud data due to its irregular 3 D geometric structure in a large-scale outdoor scene. To this end, this study develops a geometry-aware attention point network (GAANet) with geometric properties of the point cloud as a reference. Specifically, the proposed method first builds a graph-like region for each input point to establish the geometric correlation toward its neighbors for robustly descripting local geometry-aware features. Thereafter, the method introduces a novel multi-head attention mechanism to efficiently learn local discriminative features on the constructed graphs and a feature combination operation to capture both local and global geometric dependencies inside fused point features for significantly facilitating the segmentation of small or incomplete 3 D objects at point-level. Finally, an adaptive loss function is appended to handle class imbalance for the overall performance improvement. The validation experiments on two challenging benchmarks demonstrate the effectiveness and powerful generation ability of the proposed method, which achieves state-of-the-art performance with mean IoU of 65.09% and 95.20% in the Toronto-3D and Oakland 3-D MLS dataset, respectively. Numéro de notice : A2023-038 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/13658816.2022.2111572 Date de publication en ligne : 24/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2111572 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102309
in International journal of geographical information science IJGIS > vol 37 n° 1 (January 2023) . - pp 138 - 161[article]A hierarchical multiview registration framework of TLS point clouds based on loop constraint / Hao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
[article]
Titre : A hierarchical multiview registration framework of TLS point clouds based on loop constraint Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Li Yan, Auteur ; Hong Xie, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 65 - 76 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] appariement de points
[Termes IGN] approche hiérarchique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] graphe
[Termes IGN] recalage d'image
[Termes IGN] semis de points
[Termes IGN] superposition de données
[Termes IGN] traitement de semis de pointsRésumé : (auteur) Automatic registration of multiple point clouds is a significant preprocessing step for 3D computer vision tasks including semantic segmentation, 3D modelling, change detection, etc. Many methods were proposed to deal with this problem and yet most of them are not fully utilizing the redundant information offered by multiple common overlaps among point clouds. The existing methods are also inefficient when dealing with large-scale point clouds. In this paper, a novel automatic registration framework is presented to align point clouds efficiently and robustly. First, the overall number of scans is grouped into several scan-blocks by a proposed blocking strategy, and we build the pairwise relationship among scans through a fully connected graph in each scan-block. Second, perform loop-based coarse registration in each scan-block using a proposed false matches removal strategy. The proposed strategy can effectively identify grossly wrong scan-to-scan matches. Third, the minimum spanning tree is extracted from the graph, and ICP is applied along its edges. Moreover, the Lu–Milios algorithm is used to further optimize all poses at once by utilizing all redundant information in each scan-block. Finally, global block-to-block registration aligns all scan-blocks into a uniform coordinate reference. We test our framework on challenging WHU-TLS datasets, ETH datasets, and Robotic 3D Scan datasets to evaluate the efficiency, accuracy, as well as robustness. The experiment results show that our method achieves the state-of-the-art accuracy, while the time performance is improved by more than 30% compared with the state-of-the-art algorithms. Our source code is made available at https://github.com/WuHao-WHU/HL-MRF for benchmarking purposes. Numéro de notice : A2023-008 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.11.004 Date de publication en ligne : 19/11/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.11.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102112
in ISPRS Journal of photogrammetry and remote sensing > vol 195 (January 2023) . - pp 65 - 76[article]
Titre : Structured learning of geospatial data Type de document : Thèse/HDR Auteurs : Loïc Landrieu , Auteur Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2023 Importance : 179 p. Format : 21 x 30 cm Note générale : Bibliographie
Habilitation à Diriger des Recherches délivrée par l'Université Gustave Eiffel, Spécialité "Sciences et Technologies de l'Information Géographique"Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme Cut Pursuit
[Termes IGN] apprentissage automatique
[Termes IGN] carte agricole
[Termes IGN] graphe
[Termes IGN] lasergrammétrie
[Termes IGN] reconnaissance de formes
[Termes IGN] segmentation sémantique
[Termes IGN] série temporelle
[Termes IGN] vision par ordinateurRésumé : (auteur) This manuscript presents an overview of my work in the field of geospatial machine learning, a rapidly growing interdisciplinary field that poses many methodological challenges and has a wide range of impactful applications. Throughout my research, I have focused on developing bespoke approaches that leverage the unique properties of geospatial data to create more efficient, precise, and parsimonious models. This manuscript is divided into four main chapters, each covering a different property of geospatial data structures that can be leveraged algorithmically. The first chapter presents a versatile mathematical framework formalizing the concept of spatial regularity with graphs. We propose an efficient algorithm that tackles a broad family of spatial problems and provides novel convergence guarantees and significant speed-ups compared to generic approaches. The second chapter introduces a deep learning method that extends the idea of exploiting graph regularity to the case of massive 3D point clouds. We simplify the task of large-scale semantic segmentation by formulating it as as a small graph labelling problem. Our compact models reach high precision at a fraction of the computational cost of other approaches. In the third chapter, we present a collection of methods designed to take advantage of the data structure inherited from 3D sensors. By considering the sensors’ structure, we develop powerful networks with state-of-the-art accuracy, latency, and robustness for various applications and data types. The last chapter dives into the real-life challenge of automated satellite time series analysis for crop mapping. Recognizing the difference between such data and standard formats used in computer vision, we propose novel and streamlined architectures that achieve unprecedented precision while remaining efficient and economical in memory and preprocessing. We also introduce the task of panoptic segmentation for satellite time series and an efficient architecture to solve this problem at scale. In summary, this manuscript argues that geospatial problems represent a challenging and impactful venue for evaluating the newest machine learning and vision methods and a fertile source of inspiration for designing novel approaches. Note de contenu : 1- Introduction
2- Exploiting graph regularity
3- Exploiting the spatial regularity of 3D data
4- Exploiting the structure of 3D sensors
5- Exploiting the structure of satellite time series
6- Perspectives
7- Curriculum vitaeNuméro de notice : 24107 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE Nature : HDR Note de thèse : HDR: Sciences et Technologies de l’Information Geographique : UGE : 2023 Organisme de stage : LASTIG (IGN) DOI : sans En ligne : https://hal.science/tel-04095452v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103248 Geospatial modelling of overlapping habitats for identification of tiger corridor networks in the Terai Arc landscape of India / Nupur Rautela in Geocarto international, vol 37 n° 27 ([20/12/2022])
[article]
Titre : Geospatial modelling of overlapping habitats for identification of tiger corridor networks in the Terai Arc landscape of India Type de document : Article/Communication Auteurs : Nupur Rautela, Auteur ; Saurabh Shanu, Auteur ; Alok Agarwal, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 15114 - 15142 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] chevauchement
[Termes IGN] corridor biologique
[Termes IGN] faune locale
[Termes IGN] graphe
[Termes IGN] habitat animal
[Termes IGN] Inde
[Termes IGN] modélisation spatiale
[Termes IGN] système complexeRésumé : (auteur) Wildlife corridors in a landscape include local vegetation, topography, prey base, water and are associated with isolated wildlife habitat patches. They facilitate maintenance of ecological structure and function as well as provide connectivity to faunal populations supporting genetic transfers, and are elements critical to wildlife management. In this work, habitat patches for tiger, both inside as well as outside of Protected Areas have been identified by developing a Habitat Suitability Index model utilizing Remote Sensing and Geographical Information System datasets for the Terai Arc landscape, India. By using a computational approach based on the framework of theory of complex networks, for exclusively pairwise interactions between the habitat patches, a potential tiger corridor network has been structurally identified and studied in this landscape. The interactions between these habitat patches on a spatial scale has been analyzed as a clique of the corridor network. Further, the Clique Percolation Method has been applied to detect overlapping communities of habitat patches in the landscape. The Cliques required for maintaining contiguity between the habitat patches in order to support tiger movement are validated using field observations of tiger communities within the landscape matrix. The model developed for identification of tiger corridors in this study could potentially be of a vital importance for wildlife stakeholders to better understand and manage tiger populations both within and outside of protected areas. The study also highlights Critical Habitat Patches and their importance in maintaining landscape connectivity for tiger dispersal in the landscape. Using a report published by the Government of India as a benchmark, the model presented in the work is found to have an accuracy of 90.73% in predicting tiger carrying patches and the corridor network in the focal landscape. Numéro de notice : A2022-933 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2095444 Date de publication en ligne : 14/07/2022 En ligne : https://doi.org/10.1080/10106049.2022.2095444 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102670
in Geocarto international > vol 37 n° 27 [20/12/2022] . - pp 15114 - 15142[article]Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds / Zhilin Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 11 (November 2022)PermalinkA relation-augmented embedded graph attention network for remote sensing object detection / Shu Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)PermalinkSpatio-temporal graph convolutional networks for road network inundation status prediction during urban flooding / Faxi Yuan in Computers, Environment and Urban Systems, vol 97 (October 2022)PermalinkGeodesic geometry on graphs / Daniel Cizma in Discrete & computational geometry, vol 68 n° 1 (July 2022)PermalinkContext-aware network for semantic segmentation toward large-scale point clouds in urban environments / Chun Liu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)PermalinkCoupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)PermalinkGraph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)PermalinkInvariant structure representation for remote sensing object detection based on graph modeling / Zicong Zhu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)PermalinkTrue orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points / Mojdeh Ebrahimikia in Photogrammetric record, vol 37 n° 178 (June 2022)PermalinkGraph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)Permalink