Descripteur
Documents disponibles dans cette catégorie (872)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Combination of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry for Heritage Building Information Modeling: A Case Study of Tarsus St. Paul Church / Şafak Fidan in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 12 (December 2023)
[article]
Titre : Combination of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry for Heritage Building Information Modeling: A Case Study of Tarsus St. Paul Church Type de document : Article/Communication Auteurs : Şafak Fidan, Auteur ; Ulvi Ali, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 753 - 760 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] église
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique
[Termes IGN] patrimoine archéologique
[Termes IGN] patrimoine immobilierRésumé : (auteur) Cultural heritage building information modeling (HBIM) is an emerging process allowing us to reconstruct built heritage virtually. The data of a digitally documented cultural heritage building offers significant advantages as it is accessible and modifiable by all professionals involved in the same or different projects. The most important factor affecting the accuracy and precision of the HBIM model is the ability to collect complete and accurate information about the physical structure. Combining terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) photogrammetry point clouds is one of the most efficient ways to capture accurate digital data on the building. This study provides the foundation for creating an HBIM model for cultural heritage the coupling of spatial data with TLS and UAV. This paper aims to generate synergy between TLS and UAV point cloud data and ensure that the spatial database contains sufficient data to model historical objects with HBIM tendencies. Numéro de notice : A2023-238 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.23-00031R2 En ligne : https://doi.org/10.14358/PERS.23-00031R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103599
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 12 (December 2023) . - pp 753 - 760[article]Detailed cultural heritage recording produced with traditional methods and laser scanning / Ljubo Lah in Geodetski vestnik, vol 67 n° 4 (December 2023)
[article]
Titre : Detailed cultural heritage recording produced with traditional methods and laser scanning Type de document : Article/Communication Auteurs : Ljubo Lah, Auteur ; Alain Guerreau, Auteur ; Mojca K. Fras, Auteur ; Tilen Urbančič, Auteur Année de publication : 2023 Article en page(s) : pp 442 - 458 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de données
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] église
[Termes IGN] matrice orthogonale
[Termes IGN] patrimoine culturel
[Termes IGN] topométrie de précisionRésumé : (auteur) Traditional measurement methods are still widely used for recording cultural heritage objects. On the other hand, geodetic surveying and modern technologies such as 3D laser scanning can provide more accurate, geometrically consistent and extremely detailed data that can be used as a basis for detailed vector maps or 3D models. The main aim of our research was to investigate the complementary approach, using both traditional and modern methods, in order to produce detailed vector maps of the Romanesque church of St. Martin in Chapaize, France, which are essential for further unveiling its historic development. Geometrically, this church is rather extensive and has many irregularities in its shape. Our approach to the documentation process is presented and evaluated in this paper. We applied the Procrustes analysis for the ground floor map, which gave us an objective accuracy assessment. Point clouds of the bell tower acquired by two different laser instruments have also been compared. Numéro de notice : A2023-240 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.15292/geodetski-vestnik.2023.04.442-458 Date de publication en ligne : 01/12/2023 En ligne : https://dx.doi.org/10.15292/geodetski-vestnik.2023.04.442-458 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103603
in Geodetski vestnik > vol 67 n° 4 (December 2023) . - pp 442 - 458[article]Flood vulnerability assessment of urban buildings based on integrating high-resolution remote sensing and street view images / Ziyao Xing in Sustainable Cities and Society, vol 92 (May 2023)
[article]
Titre : Flood vulnerability assessment of urban buildings based on integrating high-resolution remote sensing and street view images Type de document : Article/Communication Auteurs : Ziyao Xing, Auteur ; Shuai Yang, Auteur ; Xuli Zan, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104467 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] bâtiment
[Termes IGN] Chine
[Termes IGN] gestion des risques
[Termes IGN] image Streetview
[Termes IGN] inondation
[Termes IGN] milieu urbain
[Termes IGN] planification urbaine
[Termes IGN] Quickbird
[Termes IGN] segmentation sémantique
[Termes IGN] vulnérabilitéRésumé : (auteur) Urban flood risk management requires an extensive investigation of the vulnerability characteristics of buildings. Large-scale field surveys usually cost a lot of time and money, while satellite remote sensing and street view images can provide information on the tops and facades of buildings respectively. Thereupon, this paper develops a building vulnerability assessment framework using remote sensing and street view features. Specifically, a UNet-based semantic segmentation model, FSA-UNet (Fusion-Self-Attention-UNet) is proposed to integrate remote sensing and street view features and the vulnerability information contained in the images is fully exploited. And the building vulnerability index is generated to provide the spatial distribution characteristics of urban building vulnerability. The experiment shows that the mIoU of the proposed model can reach 82% for building vulnerability classification in Hefei, China, which is more accurate than the traditional semantic segmentation models. The results indicate that the integration of street view and remote sensing image features can improve the ability of building vulnerability assessment, and the model proposed in this study can better capture the correlation features of multi-angle images through the self-attention mechanism and combines hierarchy features and edge information to improve the classification effect. This study can support for disaster management and urban planning. Numéro de notice : A2023-152 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2023.104467 Date de publication en ligne : 23/02/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104467 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102826
in Sustainable Cities and Society > vol 92 (May 2023) . - n° 104467[article]Evaluating future railway-induced urban growth of twelve cities using multiple SLEUTH models with open-source geospatial inputs / Alvin Christopher G. Varquez in Sustainable Cities and Society, vol 91 (April 2023)
[article]
Titre : Evaluating future railway-induced urban growth of twelve cities using multiple SLEUTH models with open-source geospatial inputs Type de document : Article/Communication Auteurs : Alvin Christopher G. Varquez, Auteur ; Sifan Dong, Auteur ; Shinya Hanaoka, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104442 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] gare
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatiale
[Termes IGN] réseau ferroviaire
[Termes IGN] système d'information géographique
[Termes IGN] urbanisationRésumé : (auteur) Plausible urban growth projections aid in the understanding and treatment of multidisciplinary issues faced in society. In this work, we investigated the possible effects of train stations on urban growth by comparing urban projections from a cellular-automata-based land use change model, named SLEUTH, with versions (i.e. SLEUTsH and SLEUTsHGA introduced in this study) that can consider railway-induced urban growth and those (i.e. SLEUTH and SLEUTHGA) that do not. It was found that the influence of the railway stations on urban growth varied with time and according to each city. In general, railway stations induced urbanization in their immediate surroundings. However, edge growth, which is growth at the urban boundaries was slow in the first five years of the future prediction. As demonstrated by the higher urban growth rates simulated for the first few years in the SLEUTsH cases than the SLEUTH cases, the presence of railway stations will lead to more rapid urbanization in the 2040s. Mainly relying on publicly available GIS datasets, this work demonstrates the potential for modeling railway-induced urban growth on a global scale. The findings can be further confirmed with other cellular-automata models using a similar methodology. Numéro de notice : A2023-151 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.scs.2023.104442 Date de publication en ligne : 08/02/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104442 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102824
in Sustainable Cities and Society > vol 91 (April 2023) . - n° 104442[article]Towards global scale segmentation with OpenStreetMap and remote sensing / Munazza Usmani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
[article]
Titre : Towards global scale segmentation with OpenStreetMap and remote sensing Type de document : Article/Communication Auteurs : Munazza Usmani, Auteur ; Maurizio Napolitano, Auteur ; Francesca Bovolo, Auteur Année de publication : 2023 Article en page(s) : n° 100031 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à haute résolution
[Termes IGN] information sémantique
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du solRésumé : (auteur) Land Use Land Cover (LULC) segmentation is a famous application of remote sensing in an urban environment. Up-to-date and complete data are of major importance in this field. Although with some success, pixel-based segmentation remains challenging because of class variability. Due to the increasing popularity of crowd-sourcing projects, like OpenStreetMap, the need for user-generated content has also increased, providing a new prospect for LULC segmentation. We propose a deep-learning approach to segment objects in high-resolution imagery by using semantic crowdsource information. Due to satellite imagery and crowdsource database complexity, deep learning frameworks perform a significant role. This integration reduces computation and labor costs. Our methods are based on a fully convolutional neural network (CNN) that has been adapted for multi-source data processing. We discuss the use of data augmentation techniques and improvements to the training pipeline. We applied semantic (U-Net) and instance segmentation (Mask R-CNN) methods and, Mask R–CNN showed a significantly higher segmentation accuracy from both qualitative and quantitative viewpoints. The conducted methods reach 91% and 96% overall accuracy in building segmentation and 90% in road segmentation, demonstrating OSM and remote sensing complementarity and potential for city sensing applications. Numéro de notice : A2023-148 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2023.100031 Date de publication en ligne : 16/02/2023 En ligne : https://doi.org/10.1016/j.ophoto.2023.100031 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102807
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 8 (April 2023) . - n° 100031[article]Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning / Iris de Gelis in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)PermalinkIs the radial distance really a distance? An analysis of its properties and interest for the matching of polygon features / Yann Méneroux in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)PermalinkSimplified automatic prediction of the level of damage to similar buildings affected by river flood in a specific area / David Marín-García in Sustainable Cities and Society, vol 88 (January 2023)PermalinkAutomatic registration method of multi-source point clouds based on building facades matching in urban scenes / Yumin Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)PermalinkSemantic integration of OpenStreetMap and CityGML with formal concept analysis / Somayeh Ahmadian in Transactions in GIS, vol 26 n° 8 (December 2022)PermalinkA high-resolution panchromatic-multispectral satellite image fusion method assisted with building segmentation / Fang Gao in Computers & geosciences, vol 168 (November 2022)PermalinkPoint2Roof: End-to-end 3D building roof modeling from airborne LiDAR point clouds / Li Li in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)PermalinkRaster-based method for building selection in the multi-scale representation of two-dimensional maps / Yilang Shen in Geocarto international, vol 37 n° 22 ([10/10/2022])PermalinkIdentify urban building functions with multisource data: a case study in Guangzhou, China / Yingbin Deng in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)PermalinkSemi-supervised adversarial recognition of refined window structures for inverse procedural façade modelling / Han Hu in ISPRS Journal of photogrammetry and remote sensing, vol 192 (October 2022)Permalink