Détail de l'autorité
MultiTemp 2019, 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images 05/08/2019 07/08/2019 Shanghai Chine Proceedings IEEE
nom du congrès :
MultiTemp 2019, 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images
début du congrès :
05/08/2019
fin du congrès :
07/08/2019
ville du congrès :
Shanghai
pays du congrès :
Chine
site des actes du congrès :
|
Documents disponibles (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Challenges in grassland mowing event detection with multimodal Sentinel images / Anatol Garioud (2019)
Titre : Challenges in grassland mowing event detection with multimodal Sentinel images Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Sébastien Giordano , Auteur ; Silvia Valero, Auteur ; Clément Mallet , Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2019 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : MultiTemp 2019, 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images 05/08/2019 07/08/2019 Shanghai Chine Proceedings IEEE Importance : pp 1 - 4 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] détection d'événement
[Termes IGN] données lidar
[Termes IGN] image multibande
[Termes IGN] image RapidEye
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] image TerraSAR-X
[Termes IGN] méthode robuste
[Termes IGN] nébulosité
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Perceptron multicouche
[Termes IGN] prairie
[Termes IGN] régression
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] surveillance de la végétationRésumé : (auteur) Permanent Grasslands (PG) are heterogeneous environments with high spatial and temporal dynamics, subject to increasing environmental challenges. This study aims to identify requirements, key constraining factors and solutions for robust and complete detection of Mowing Events. Remote sensing is a powerful tool to monitor and investigate Near-Real-Time and seasonally PG cover. Here, pros and cons of Sentinel-2 (S2) and Sentinel-1 (S1) time series exploitation for Mowing Events (MowEve) detection are analysed. A deep-based approach is proposed to obtain consistent and homogeneous biophysical parameter times series for MowEve detection. Recurrent Neural Networks are proposed as regression strategy allowing the synergistic integration of optical and Synthetic Aperture Radar data to reconstruct dense NDVI times series. Experimental results corroborates the interest of deriving consistent and homogeneous series of biophysical parameters for subsequent MowEve detection. Numéro de notice : C2019-028 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/Multi-Temp.2019.8866914 Date de publication en ligne : 29/11/2019 En ligne : https://doi.org/10.1109/Multi-Temp.2019.8866914 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94538