Descripteur
Documents disponibles dans cette catégorie (560)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Land subsidence in Beijing’s sub-administrative center and its relationship with urban expansion inferred from Sentinel-1/2 observations / Jin Cao in Canadian journal of remote sensing, vol 47 n° 6 ([01/11/2021])
[article]
Titre : Land subsidence in Beijing’s sub-administrative center and its relationship with urban expansion inferred from Sentinel-1/2 observations Titre original : Affaissement du sol dans le centre sous administratif de Beijing et sa relation avec l’expansion urbaine déduits des observations de Sentinel-1/2 Type de document : Article/Communication Auteurs : Jin Cao, Auteur ; Huili Gong, Auteur ; Beibei Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 802 - 817 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] croissance urbaine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Pékin (Chine)
[Termes IGN] subsidenceRésumé : (auteur) Beijing’s Sub-Administrative Center (BSAC) is located in the South-eastern Beijing Plain, which exhibits severe subsidence. The rapid urban expansion in recent years has aggravated land subsidence and threatens the safe operation of Beijing. First, this study applied the persistent scatterer-interferometric synthetic aperture radar (PS-InSAR) to extract BSAC subsidence time series data. Second, combined with the index-based built-up index (IBI), expansion intensity index (EII), and expansion gradient index (EGI), the spatiotemporal characteristics of urban expansion were retrieved from optical data. Finally, we examined the urban expansion effects on land subsidence at the regional and single-building scales. The results showed that the maximum subsidence velocity in the BSAC reached 121 mm/year from 2015 to 2018, and the urban construction land area increased by 22%. At the regional scale, there existed a positive correlation between land subsidence and EGI or EII. This indicated that urban expansion had a certain impact on land subsidence. Therefore, we further explored the relationship between construction and land subsidence at the single-building scale. The engineering construction effects on land subsidence were divided into three periods, namely, rapid settlement, rebound, and stable periods. Although construction had a significant influence on land subsidence, it did not cause subsidence mutation. Numéro de notice : A2021-955 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1080/07038992.2021.1964944 Date de publication en ligne : 01/09/2021 En ligne : https://doi.org/10.1080/07038992.2021.1964944 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99981
in Canadian journal of remote sensing > vol 47 n° 6 [01/11/2021] . - pp 802 - 817[article]Multiscale geographically and temporally weighted regression with a unilateral temporal weighting scheme and its application in the analysis of spatiotemporal characteristics of house prices in Beijing / Zhi Zhang in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : Multiscale geographically and temporally weighted regression with a unilateral temporal weighting scheme and its application in the analysis of spatiotemporal characteristics of house prices in Beijing Type de document : Article/Communication Auteurs : Zhi Zhang, Auteur ; Jing Li, Auteur ; Fung, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2262 - 2286 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] coût
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] marché foncier
[Termes IGN] Pékin (Chine)
[Termes IGN] régression géographiquement pondéréeRésumé : (auteur) Geographically and temporally weighted regression (GTWR) has been demonstrated as an effective tool for exploring spatiotemporal data under spatial and temporal heterogeneity. Exploiting the advantages of the two most popular GTWR methods, we propose an alternative GTWR with a good balance between complexity and interpretability via a unilateral temporal weighting scheme called unilateral GTWR (UGTWR). When compared to the other two popular GTWR methods, the simulation experiment shows that UGTWR has comparable estimation accuracy and model fit, but it is more efficient. Furthermore, we propose its multiscale extension, coined multiscale UGTWR (MUGTWR), to characterize the spatiotemporal dynamic regression relationships at multiple scales. The proposed MUGTWR was applied to the analysis of house prices in the period of 2014–2018 in Beijing as a case study. Our analysis reveals that MUGTWR can effectively capture different levels of spatiotemporal heterogeneity in selected factors affecting house prices at different scales. Therefore, this study is useful for the formulation of housing policy in which the spatiotemporal dynamics of house prices with respect to specific factors can be considered. Numéro de notice : A2021-758 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1912348 Date de publication en ligne : 12/05/2021 En ligne : https://doi.org/10.1080/13658816.2021.1912348 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98773
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2262 - 2286[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery / Lan Xun in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
[article]
Titre : A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery Type de document : Article/Communication Auteurs : Lan Xun, Auteur ; Jiahua Zhang, Auteur ; Dan Cao, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 148 - 166 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie automatique
[Termes IGN] Chine
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] distribution spatiale
[Termes IGN] Etats-Unis
[Termes IGN] Gossypium (genre)
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] polarisation
[Termes IGN] réflectance spectrale
[Termes IGN] série temporelleRésumé : (auteur) Cotton is an important cash crop in the world, as the main source of natural and renewable fiber for textiles. Accurate and timely monitoring of the cotton distribution is crucial for cotton cultivation management and international trade. However, most of the previous researches on cotton identification using remotely sensed images are highly dependent on training samples, and the collection of samples is time-consuming and expensive. To overcome this limitation, a new index, termed as Cotton Mapping Index (CMI), was developed in this study for automatic cotton mapping using time series of Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 Multispectral Instrument (MSI) satellite data. Four sites in the United States (U.S.) and four sites in China were selected to develop and assess the performance of the CMI. The spectral characteristics derived from Sentinel-2 and backscattering coefficients derived from Sentinel-1 for cotton and non-cotton crops during the cotton growth period were analyzed. Considering the phenology differences of crops in different regions, the features at an adaptive window were adopted to construct the CMI. The results showed that at the peak greenness period, the multiplication of red-edge 1 and red-edge 2 band for cotton samples were much larger than those for non-cotton samples, whereas the spectral angle at the red band as well as the absolute values of backscattering coefficients in vertical transmit and vertical receive (VV) polarization for cotton samples were much smaller than those for non-cotton samples. Based on these findings, the CMI was developed to identify cotton cultivated area within the cropland area. The overall accuracy of classification results for the sites in the U.S. was higher than 81.20%, and the mean relative error for the sites in Xinjiang of China was 26.69%. The CMI, which incorporated optical and radar features, had a better performance than the indices using optical features solely. The advantage of the CMI over supervised classifiers (i.e., k-nearest neighbors, support vector machine and random forest) is that no training samples are required. Moreover, the cotton distribution map can be obtained before the harvest using the CMI. These results indicated the potential of the CMI for cotton mapping. The applicability of CMI in other regions with different cropping systems and crop types needs to be further assessed in the future study. Numéro de notice : A2021-775 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.08.021 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.08.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98836
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 148 - 166[article]Semi-automatic extraction of rural roads under the constraint of combined geometric and texture features / Hai Tan in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
[article]
Titre : Semi-automatic extraction of rural roads under the constraint of combined geometric and texture features Type de document : Article/Communication Auteurs : Hai Tan, Auteur ; Zimo Shen, Auteur ; Jiguang Dai, Auteur Année de publication : 2021 Article en page(s) : pp 754 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] chemin rural
[Termes IGN] Chine
[Termes IGN] coefficient de corrélation
[Termes IGN] contrainte géométrique
[Termes IGN] corrélation croisée normalisée
[Termes IGN] courbure
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction semi-automatique
[Termes IGN] image à haute résolution
[Termes IGN] modèle de simulation
[Termes IGN] niveau de gris (image)
[Termes IGN] route
[Termes IGN] texture d'imageRésumé : (auteur) The extraction of road information from high-resolution remotely-sensed images has important application value in many fields. Rural roads have the characteristics of relatively narrow widths and diversified pavement materials; these characteristics can easily lead to problems involving the similarity of the road texture with the texture of surrounding objects and make it difficult to improve the automation of traditional high-precision road extraction methods. Based on this background, a semi-automatic rural road extraction method constrained by a combination of geometric and texture features is proposed in this paper. First, an adaptive road width extraction model is proposed to improve the accuracy of the initial road centre point. Then, aiming at the continuous change of curvature of rural roads, a tracking direction prediction model is proposed. Finally, a matching model under geometric texture constraints is proposed, which solves the problem of similarity between road and neighbourhood texture to a certain extent. The experimental results show that by selecting different types of experimental scenes or remotely sensed image data, compared with other methods, the proposed method can not only guarantee the road extraction accuracy but also improve the degree of automation to a certain extent. Numéro de notice : A2021-850 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10110754 Date de publication en ligne : 09/11/2021 En ligne : https://doi.org/10.3390/ijgi10110754 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99009
in ISPRS International journal of geo-information > vol 10 n° 11 (November 2021) . - pp 754[article]Superpixel-based regional-scale grassland community classification using genetic programming with Sentinel-1 SAR and Sentinel-2 multispectral images / Zhenjiang Wu in Remote sensing, vol 13 n° 20 (October-2 2021)
[article]
Titre : Superpixel-based regional-scale grassland community classification using genetic programming with Sentinel-1 SAR and Sentinel-2 multispectral images Type de document : Article/Communication Auteurs : Zhenjiang Wu, Auteur ; Jiahua Zhang, Auteur ; Fan Deng, Auteur Année de publication : 2021 Article en page(s) : n° 4067 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] Chine
[Termes IGN] classification par algorithme génétique
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] prairie
[Termes IGN] précision de la classification
[Termes IGN] superpixel
[Termes IGN] texture d'imageRésumé : (auteur) Grasslands are one of the most important terrestrial ecosystems on the planet and have significant economic and ecological value. Accurate and rapid discrimination of grassland communities is critical to the conservation and utilization of grassland resources. Previous studies that explored grassland communities were mainly based on field surveys or airborne hyperspectral and high-resolution imagery. Limited by workload and cost, these methods are typically suitable for small areas. Spaceborne mid-resolution RS images (e.g., Sentinel, Landsat) have been widely used for large-scale vegetation observations owing to their large swath width. However, there still keep challenges in accurately distinguishing between different grassland communities using these images because of the strong spectral similarity of different communities and the suboptimal performance of models used for classification. To address this issue, this paper proposed a superpixel-based grassland community classification method using Genetic Programming (GP)-optimized classification model with Sentinel-2 multispectral bands, their derived vegetation indices (VIs) and textural features, and Sentinel-1 Synthetic Aperture Radar (SAR) bands and the derived textural features. The proposed method was evaluated in the Siziwang grassland of China. Our results showed that the addition of VIs and textures, as well as the use of GP-optimized classification models, can significantly contribute to distinguishing grassland communities, and the proposed approach classified the seven communities in Siziwang grassland with an overall accuracy of 84.21% and a kappa coefficient of 0.81. We concluded that the classification method proposed in this paper is capable of distinguishing grassland communities with high accuracy at a regional scale. Numéro de notice : A2021-805 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13204067 Date de publication en ligne : 12/10/2021 En ligne : https://doi.org/10.3390/rs13204067 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98862
in Remote sensing > vol 13 n° 20 (October-2 2021) . - n° 4067[article]Bi- and three-dimensional urban change detection using sentinel-1 SAR temporal series / Meiqin Che in Geoinformatica, vol 25 n° 4 (October 2021)PermalinkComplexity-based matching between image resolution and map scale for multiscale image-map generation / Qian Peng in International journal of geographical information science IJGIS, vol 35 n° 10 (October 2021)PermalinkEarly detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery / Run Yu in Forest ecology and management, vol 497 (October-1 2021)PermalinkLandslide susceptibility prediction based on image semantic segmentation / Bowen Du in Computers & geosciences, vol 155 (October 2021)PermalinkPhase unmixing of TerraSAR-X staring spotlight interferograms in building scale for PS height and deformation / Peng Liu in ISPRS Journal of photogrammetry and remote sensing, vol 180 (October 2021)PermalinkSpatial structure system of land use along urban rail transit based on GIS spatial clustering / Yu Gao in European journal of remote sensing, vol 54 sup 2 (2021)PermalinkA new approach for the development of grid models calculating tropospheric key parameters over China / Ge Zhu in Remote sensing, vol 13 n° 17 (September-1 2021)PermalinkUnderstanding the modifiable areal unit problem in dockless bike sharing usage and exploring the interactive effects of built environment factors / Feng Gao in International journal of geographical information science IJGIS, vol 35 n° 9 (September 2021)PermalinkAutomated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN) / Zhenbang Hao in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)PermalinkA high-efficiency global model of optimization design of impervious surfaces for alleviating urban waterlogging in urban renewal / Huafei Yu in Transactions in GIS, Vol 25 n° 4 (August 2021)PermalinkImproving urban land cover classification with combined use of Sentinel-2 and Sentinel-1 imagery / Bin Hu in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)PermalinkRapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning / Xin Jiang in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)PermalinkRemote sensing method for extracting topographic information on tidal flats using spatial distribution features / Yang Lijun in Marine geodesy, vol 44 n° 5 (September 2021)PermalinkSurface modelling of forest aboveground biomass based on remote sensing and forest inventory data / Xiaofang Sun in Geocarto international, vol 36 n° 14 ([01/08/2021])PermalinkAtmospheric correction to passive microwave brightness temperature in snow cover mapping over china / Yubao Qiu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)PermalinkEstimation of tree height and aboveground biomass of coniferous forests in North China using stereo ZY-3, multispectral Sentinel-2, and DEM data / Yueting Wang in Ecological indicators, vol 126 (July 2021)PermalinkGeographical and temporal huff model calibration using taxi trajectory data / Shuhui Gong in Geoinformatica, vol 25 n° 3 (July 2021)PermalinkGlacier elevation change in the Western Qilian mountains as observed by TerraSAR-X/TanDEM-X images / Qibing Zhang in Geocarto international, vol 36 n° 12 ([01/07/2021])PermalinkMachine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices / Linchuan Yang in Annals of GIS, vol 27 n° 3 (July 2021)PermalinkMapping sandy land using the new sand differential emissivity index from thermal infrared emissivity data / Shanshan Chen in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)Permalink