Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 79 n° 8Paru le : 01/08/2013 ISBN/ISSN/EAN : 0099-1112 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA methodology to characterize vertical accuracies in lidar-derived products at landscape scales / Wade T. Tinkham in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 8 (August 2013)
[article]
Titre : A methodology to characterize vertical accuracies in lidar-derived products at landscape scales Type de document : Article/Communication Auteurs : Wade T. Tinkham, Auteur ; Chad .m Hoffman, Auteur ; Michael J. Falkowski, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 709 - 716 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] modèle numérique de surface
[Termes IGN] paysage
[Termes IGN] précision altimétriqueRésumé : (Auteur) Light detection and ranging (lidar) is the premier technology for high-resolution elevation measurements in complex landscapes. Lidar error assessments allow for objective interpretation of Digital Elevation Models (DEMs) and products reliant on these layers. The purpose of this study is to spatially estimate the vertical error of a lidar-derived DEM across seven cover types through modeling of field survey data. We use thirty-four variables and ground-based field survey data in a Random Forest regression to predict elevation error. Four variables captured the variability within the lidar errors, with three variables relevant to the distribution of returns within the vegetation and one relating to the terrain form. Good agreement was observed when comparing the survey against the model predictions (u = -0.02 m, s = 0.13 m, and RMSE = 0.14 m). With most lidar products reliant upon accurate production of DEMs, providing spatially explicit assessments of uncertainty at the landscape level will increase user confidence in lidar products. Numéro de notice : A2013-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.8.709 En ligne : https://doi.org/10.14358/PERS.79.8.709 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32563
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 8 (August 2013) . - pp 709 - 716[article]Registration of optical images with lidar data and its accuracy assessment / Shunyl Zheng in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 8 (August 2013)
[article]
Titre : Registration of optical images with lidar data and its accuracy assessment Type de document : Article/Communication Auteurs : Shunyl Zheng, Auteur ; Rongyong Huang, Auteur ; Yang Zhou, Auteur Année de publication : 2013 Article en page(s) : pp 731 - 741 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] appariement de données localisées
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image optique
[Termes IGN] photogrammétrie terrestre
[Termes IGN] point de repère
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] superposition d'imagesRésumé : (Auteur) Photogrammetry and lidar are two technologies complementary/or 3D reconstruction. However, the problem is that the current registration methods of optical images with lidar data cannot satisfy all the requirements for the fusion of the above two technologies, especially for close-range photogrammetry and terrestrial lidar. In this paper, we propose a novel method for registration of optical images with terrestrial lidar data, which is implemented by minimizing the distances from the photogrammetric matching points to terrestrial lidar data surface, with the collinearity equation as the basic mathematical model. One advantage of this method is that it requires no feature extraction and segmentation from the lidar data. Another advantage is that non-rigid deformation caused by lens distortion can be eliminated through the use of bundle adjustment similar to self-calibration. In addition, experiments with two different data sets show that this method cannot only eliminate the influence of certain gross errors, but also offer a high accuracy of 3 mm to 5 mm. Therefore, the proposed registration method is proved to be more effective, accurate, and reliable. Numéro de notice : A2013-426 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.8.731 En ligne : https://doi.org/10.14358/PERS.79.8.731 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32564
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 8 (August 2013) . - pp 731 - 741[article]Registration of aerial imagery and lidar data in desert areas using the centroids of bushes as control information / Na Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 8 (August 2013)
[article]
Titre : Registration of aerial imagery and lidar data in desert areas using the centroids of bushes as control information Type de document : Article/Communication Auteurs : Na Li, Auteur ; Xianfeng Huang, Auteur ; Fan Zhang, Auteur ; Le Wang, Auteur Année de publication : 2013 Article en page(s) : pp 743 - 752 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] appariement de données localisées
[Termes IGN] brousse
[Termes IGN] centroïde
[Termes IGN] désert
[Termes IGN] données lidar
[Termes IGN] Gobi, désert du
[Termes IGN] image aérienne
[Termes IGN] Ransac (algorithme)
[Termes IGN] semis de pointsRésumé : (Auteur) Geometric registration of multiple-source data is of great value for fusion processing and is very beneficial for the research of desert ecosystems. A lidar point cloud and optical image are two typical data that need to be integrated for data assimilation and information retrieval. This paper aims to solve the registration problem of aerial imagery and airborne lidar data in desert areas where traditional registration methods have difficulties in identifying registration primitives. In many deserts, such as the Sahara in Africa and Gobi in China, we observe that there are unevenly distributed desert bushes, which can be used as cues for registration. In this paper, we propose a registration approach using the centroids of bushes as registration primitives. This approach employs similar triangles created from both centroids as the evidence for matching and verifies the registration by the RANSAC algorithm. Experiments using data taken from the Dunhuang Gobi Desert in China show the registration surface model visually, and at the same time quantifies the deviation error, which corroborates that the proposed registration method is effective and feasible in desert areas. Numéro de notice : A2013-427 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.8.731 En ligne : https://doi.org/10.14358/PERS.79.8.731 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32565
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 8 (August 2013) . - pp 743 - 752[article]