Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Asie (géographie politique) > Malaisie
MalaisieVoir aussi |
Documents disponibles dans cette catégorie (38)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Incorporation of digital elevation model, normalized difference vegetation index, and Landsat-8 data for land use land cover mapping / Jwan Al-Doski in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 8 (August 2022)
[article]
Titre : Incorporation of digital elevation model, normalized difference vegetation index, and Landsat-8 data for land use land cover mapping Type de document : Article/Communication Auteurs : Jwan Al-Doski, Auteur ; Faez M. Hassan, Auteur ; Hussein Abdelwahab Mossa, Auteur ; Aus A. Najim, Auteur Année de publication : 2022 Article en page(s) : pp 507 - 516 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte d'utilisation du sol
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données auxiliaires
[Termes IGN] image Landsat-8
[Termes IGN] Malaisie
[Termes IGN] MNS ASTER
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] ombre
[Termes IGN] précision de la classificationRésumé : (Auteur) Ancillary data are crucial in land use land cover (LULC) mapping process. This study goal is to investigate if adding Normalized Difference Vegetation Index (NDVI) and digital elevation model (DEM) data as ancillary data to the Landsat-8 spectral imagery (acquired on 14 April 2016) in the support vector machine (SVM ) classification process improves LULC mapping accuracy in GuaMusang, Malaysia. ENVI software was used to preprocess a single Landsat-8 image, convert it to reflectance, and calculate NDVI. ASTER-GDEM data were used to generate the DEM. The logical channel method was used to combine NDVI and DEM with Landsat-8 bands and limit the impact of shadows during SVM classification. The SVM accuracy was tested and evaluated on ancillary data and Landsat-8 spectral-based collection. The results revealed that the user's accuracy and producer's accuracy improved by 15.1% and 2.1%, for primary forest and by 17.93% and 28.86% for secondary forest, respectively. The classification reliability of the majority of LULC categories has increased significantly. Compared to SVM spectral-based set, the overall accuracy and kappa coefficient of the SVM ancillary-based set improved by 8.77% and 0.12, respectively. In conclusion, this article demonstrated that integrating DEM and NDVI data improves Landsat-8 image classification precision. Numéro de notice : A2022-805 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00082R2 Date de publication en ligne : 01/08/2022 En ligne : https://doi.org/10.14358/PERS.21-00082R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102132
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 8 (August 2022) . - pp 507 - 516[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022081 SL Revue Centre de documentation Revues en salle Disponible A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia / Rofiat Bunmi Mudashiru in Natural Hazards, vol 112 n° 3 (July 2022)
[article]
Titre : A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia Type de document : Article/Communication Auteurs : Rofiat Bunmi Mudashiru, Auteur ; Nuridah Sabtu, Auteur ; Rozi Abdullah, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1903 - 1939 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse multicritère
[Termes IGN] carte thématique
[Termes IGN] cartographie des risques
[Termes IGN] Malaisie
[Termes IGN] modèle de simulation
[Termes IGN] prévention des risques
[Termes IGN] processus de hiérarchisation analytique floue
[Termes IGN] zone inondableRésumé : (auteur) Flooding is a major and recurring natural disaster in Northeast Penang, Malaysia. The ability to effectively identify flood hazard areas represents an important part of flood risk analysis and management. There is a need for a structured study that incorporates stakeholders’ inputs such as the multi-criteria decision-making (MCDM) model to delineate flood-prone locations to support the management and mitigation measures of flooding in this area. Previous studies have compared the analytic hierarchy process (AHP) and fuzzy AHP methods in flood hazard mapping. Therefore, this study proposes to test the predicting capability of three MCDM models in the determination of flood-prone areas: the AHP, triangular fuzzy AHP (TF-AHP), and trapezoidal fuzzy AHP (TZF-AHP) in this area. The methodology applies nine flood-causative factors (FCFs) which include drainage density, elevation, land use, slope, rainfall, flood depth, distance from rivers, lithology, and distance from inundation. The resulting flood hazard maps showed a closer similarity between the TF-AHP and TZ-AHP methods compared to the AHP method for flood hazard mapping. The sensitivity analysis indicated that the AHP was more accurate than the fuzzy AHP models based on the weight estimation. The validation results showed that 100%, 93%, and 93% of the actual flood events occurred in the ‘moderate’ to ‘very high’ flood hazard areas for the AHP, TF-AHP, and TZF-AHP, respectively. Overall results showed the accuracy of all three models in modeling flood hazard areas. Therefore, the findings can be adopted as a tool in making informed and accurate policies about flood management for effective climate mitigation decision making. Numéro de notice : A2022-558 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s11069-022-05250-w Date de publication en ligne : 28/02/2022 En ligne : https://doi.org/10.1007/s11069-022-05250-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101176
in Natural Hazards > vol 112 n° 3 (July 2022) . - pp 1903 - 1939[article]Estimating feature extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using and object-based technique / Syaza Rozali in Geocarto international, vol 37 n° 11 ([15/06/2022])
[article]
Titre : Estimating feature extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using and object-based technique Type de document : Article/Communication Auteurs : Syaza Rozali, Auteur ; Zulkiflee Abd Latif, Auteur ; Nor Aizam Adnan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3247 - 3264 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-OLI
[Termes IGN] MalaisieRésumé : (auteur) The study involves an object-based segmentation method to extract feature changes in tropical rainforest cover using Landsat image and airborne LiDAR (ALS). Disturbance event that are represents the changes are examined by the classification of multisensor data; that is a highly accurate ALS with different resolutions of multispectral Landsat image. Disturbance Index (DI) derived from Tasseled Cap Transformation, Normalized Difference Vegetation Index (NDVI), and the ALS height are the variables for object-based segmentation process. The classification is categorized into two classes; disturbed and non-disturbed forest cover using Nearest Neighbor (NN), Random Forest (RF) and Support Vector Machine (SVM). The overall accuracy ranging from 88% to 96% and kappa ranging from 0.79 to 0.91. Mcnemar’s test p-value ( Numéro de notice : A2022-586 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1852610 Date de publication en ligne : 27/12/2020 En ligne : https://doi.org/10.1080/10106049.2020.1852610 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101360
in Geocarto international > vol 37 n° 11 [15/06/2022] . - pp 3247 - 3264[article]Investigating the application of artificial intelligence for earthquake prediction in Terengganu / Suzlyana Marhain in Natural Hazards, vol 108 n° 1 (August 2021)
[article]
Titre : Investigating the application of artificial intelligence for earthquake prediction in Terengganu Type de document : Article/Communication Auteurs : Suzlyana Marhain, Auteur ; Ali Najah Ahmed, Auteur ; Muhammad Ary Murti, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 977 - 999 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] apprentissage automatique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] courbe de Pearson
[Termes IGN] données météorologiques
[Termes IGN] intelligence artificielle
[Termes IGN] Malaisie
[Termes IGN] prévention des risques
[Termes IGN] régression multivariée par spline adaptative
[Termes IGN] séisme
[Termes IGN] surveillance géologique
[Termes IGN] tsunamiRésumé : (auteur) Numéro de notice : A2021-599 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.1007/s11069-021-04716-7 Date de publication en ligne : 04/04/2021 En ligne : https://doi.org/10.1007/s11069-021-04716-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98232
in Natural Hazards > vol 108 n° 1 (August 2021) . - pp 977 - 999[article]Coral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers / Mohammad Shawkat Hossain in Geocarto international, vol 36 n° 11 ([15/06/2021])
[article]
Titre : Coral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers Type de document : Article/Communication Auteurs : Mohammad Shawkat Hossain, Auteur ; Aidy M. Muslim, Auteur ; Muhammad Izuan Nadzri, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1217 - 1235 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification bayesienne
[Termes IGN] classification de Dempster-Shafer
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification pixellaire
[Termes IGN] fond marin
[Termes IGN] Google Earth
[Termes IGN] habitat d'espèce
[Termes IGN] image Quickbird
[Termes IGN] Malaisie
[Termes IGN] précision infrapixellaire
[Termes IGN] récif corallienRésumé : (auteur) This study deals with the mixed-pixel problem of detecting benthic habitat class membership and evaluates two soft classifiers for coral habitat mapping on Lang Tengah island (Malaysia). A comparison was made between the Bayesian and Dempster–Shafer (D–S) with a traditional maximum likelihood (ML). The heterogeneous pattern of reef environment, established by field observation, four classes of coral habitats containing various combinations of live coral, dead coral with algae, rubble coral and sand. Posterior probability and belief maps, generated by Bayesian and D–S, respectively, were evaluated by visual inspection and final coral habitat distribution maps were validated via accuracy assessment estimates. The accuracy validation tests agreed with the visual inspection of the probability, uncertainty and coral distribution maps. The Bayesian algorithm performed better, with a 34.7–68.5% improvement in accuracy compared to D–S and ML, respectively. Probability maps demonstrate the advantages of the soft classifier over the hard classifier for coral mapping. Numéro de notice : A2021-435 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1637466 Date de publication en ligne : 10/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1637466 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97803
in Geocarto international > vol 36 n° 11 [15/06/2021] . - pp 1217 - 1235[article]Automated detection of lineaments express geological linear features of a tropical region using topographic fabric grain algorithm and the SRTM DEM / Samy Ismail Elmahdy in Geocarto international, vol 36 n° 1 ([01/01/2021])PermalinkHomogeneous tree height derivation from tree crown delineation using Seeded Region Growing (SRG) segmentation / Muhamad Farid Ramli in Geo-spatial Information Science, vol 23 n° 3 (September 2020)PermalinkCan ensemble techniques improve coral reef habitat classification accuracy using multispectral data? / Mohammad Shawkat Hossain in Geocarto international, vol 35 n° 11 ([01/08/2020])PermalinkSemi-kinematic geodetic reference frame based on the ITRF2014 for Malaysia / M. Azhari in Journal of geodetic science, vol 10 n° 1 (January 2020)PermalinkNear real-time deforestation detection in Malaysia and Indonesia using change vector analysis with three sensors / Pauline Perbet in International Journal of Remote Sensing IJRS, vol 40 n°19 (February 2019)PermalinkMapping rubber trees based on phenological analysis of Landsat time series data-sets / Janatul Aziera binti Abd Razak in Geocarto international, vol 33 n° 6 (June 2018)PermalinkGeneric rule-sets for automated detection of urban tree species from very high-resolution satellite data / Razieh Shojanoori in Geocarto international, vol 33 n° 4 (April 2018)PermalinkFusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area / Mohamed Barakat A. Gibril in Geocarto international, vol 32 n° 7 (July 2017)PermalinkEngaging indigenous people as geo-crowdsourcing sensors for ecotourism mapping via mobile data collection: a case study of the Royal Belum State Park / Nurul Hawani Idris in Cartography and Geographic Information Science, Vol 44 n° 2 (March 2017)PermalinkData fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and QuickBird satellite imagery / Biswajeet Pradhan in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)Permalink