Descripteur
Documents disponibles dans cette catégorie (4502)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Altimétrie laser et surveillance / Laurent Polidori in Géomètre, n° 2192 (juin 2021)
[article]
Titre : Altimétrie laser et surveillance Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2021 Article en page(s) : pp 18-18 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] altimétrie satellitaire par laser
[Termes IGN] biomasse forestière
[Termes IGN] calotte glaciaire
[Termes IGN] changement climatique
[Termes IGN] données ICEsat
[Termes IGN] écosystème forestier
[Termes IGN] fonte des glaces
[Termes IGN] précision altimétrique
[Termes IGN] surveillance forestièreRésumé : (Auteur) Un laser en orbite observe les forêts tropicales et les calottes polaires pour mesurer le réchauffement climatique. Numéro de notice : A2021-376 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 08/06/2021 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97862
in Géomètre > n° 2192 (juin 2021) . - pp 18-18[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2021061 RAB Revue Centre de documentation En réserve L003 Disponible Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery / Sikdar M. M. Rasel in Geocarto international, vol 36 n° 10 ([01/06/2021])
[article]
Titre : Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery Type de document : Article/Communication Auteurs : Sikdar M. M. Rasel, Auteur ; Hsing-Chung Chang, Auteur ; Timothy J. Ralph, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1075-1099 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] bande spectrale
[Termes IGN] biomasse
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] marais salé
[Termes IGN] modèle de simulation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression
[Termes IGN] variableRésumé : (Auteur) Assessing large scale plant productivity of coastal marshes is essential to understand the resilience of these systems to climate change. Two machine learning approaches, random forest (RF) and support vector machine (SVM) regression were tested to estimate biomass of a common saltmarshes species, salt couch grass (Sporobolus virginicus). Reflectance and vegetation indices derived from 8 bands of Worldview-2 multispectral data were used for four experiments to develop the biomass model. These four experiments were, Experiment-1: 8 bands of Worldview-2 image, Experiment-2: Possible combination of all bands of Worldview-2 for Normalized Difference Vegetation Index (NDVI) type vegetation indices, Experiment-3: Combination of bands and vegetation indices, Experiment-4: Selected variables derived from experiment-3 using variable selection methods. The main objectives of this study are (i) to recommend an affordable low cost data source to predict biomass of a common saltmarshes species, (ii) to suggest a variable selection method suitable for multispectral data, (iii) to assess the performance of RF and SVM for the biomass prediction model. Cross-validation of parameter optimizations for SVM showed that optimized parameter of ɛ-SVR failed to provide a reliable prediction. Hence, ν-SVR was used for the SVM model. Among the different variable selection methods, recursive feature elimination (RFE) selected a minimum number of variables (only 4) with an RMSE of 0.211 (kg/m2). Experiment-4 (only selected bands) provided the best results for both of the machine learning regression methods, RF (R2= 0.72, RMSE= 0.166 kg/m2) and SVR (R2= 0.66, RMSE = 0.200 kg/m2) to predict biomass. When a 10-fold cross validation of the RF model was compared with a 10-fold cross validation of SVR, a significant difference (p = Numéro de notice : A2021-367 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1624988 Date de publication en ligne : 11/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1624988 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97729
in Geocarto international > vol 36 n° 10 [01/06/2021] . - pp 1075-1099[article]Cloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 / Dimitris Poursanidis in Remote sensing in ecology and conservation, vol 7 n° 2 (June 2021)
[article]
Titre : Cloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 Type de document : Article/Communication Auteurs : Dimitris Poursanidis, Auteur ; Dimosthenis Traganos, Auteur ; Luisa Teixeira, Auteur ; Aurélie Shapiro, Auteur ; Lara Muaves, Auteur Année de publication : 2021 Article en page(s) : pp 275 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] écosystème
[Termes IGN] Google Earth Engine
[Termes IGN] habitat (nature)
[Termes IGN] image Sentinel-MSI
[Termes IGN] Mozambique
[Termes IGN] récif corallien
[Termes IGN] réserve naturelle
[Termes IGN] surveillance écologiqueRésumé : (auteur) The lack of detailed spatial information on coastal resources, notably shallow water coral reefs and associated benthic habitats, impedes our ability to protect and manage them in the face of global climate change and anthropogenic impacts. Here, we develop a semi-automated workflow in the cloud that uses freely available Sentinel-2 data from the European Space Agency (ESA) Copernicus programme to derive information on near-shore coral reef habitats in the Quirimbas National Park (QNP), a recently declared biosphere reserve in northern Mozambique. We use an end-to-end cloud-based framework within the Google Earth Engine cloud geospatial platform to process imagery from raw pixels to cloud-free composites which are corrected for glint and surface artefacts, water column and derived estimated depth and then classified into four benthic habitats. Using independent training and validation data, we apply three supervised classification algorithms: random forests (RF), support vector machine (SVM) and classification and regression trees (CART). Our results show that random forests are the most accurate supervised algorithm with over 82% overall accuracy. We mapped over 105 000 ha of shallow water habitat inside the protected area, of which 18% are dominated by coral and hardbottom; 27.5% are seagrass and submerged aquatic vegetation and another 23.4% are soft and sandy substrates, and the remaining area is optically deep water. We employ satellite-derived bathymetry to assess slope, bathymetric position, rugosity and underwater topography of these habitats. Finally, a spectral unmixing model provides further sub-pixel–level information of habitats with the potential to monitor changes over time. This effort provides the first, consistent and repeatable and also scalable coastal information system for an east African tropical marine protected area, which hosts shallow-water ecosystems which are of great significance to local communities and building resilience towards climate change. Numéro de notice : A2021-733 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1002/rse2.187 Date de publication en ligne : 29/11/2020 En ligne : https://doi.org/10.1002/rse2.187 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98679
in Remote sensing in ecology and conservation > vol 7 n° 2 (June 2021) . - pp 275 - 291[article]Detection of suitable sites for rainwater harvesting planning in an arid region using geographic information system / Hadeel Qays Hashim in Applied geomatics, vol 13 n° 2 (June 2021)
[article]
Titre : Detection of suitable sites for rainwater harvesting planning in an arid region using geographic information system Type de document : Article/Communication Auteurs : Hadeel Qays Hashim, Auteur ; Khamis Naba Sayl, Auteur Année de publication : 2021 Article en page(s) : pp 235 - 248 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algèbre de Boole
[Termes IGN] analyse multicritère
[Termes IGN] barrage
[Termes IGN] combinaison linéaire ponderée
[Termes IGN] eau pluviale
[Termes IGN] Iraq
[Termes IGN] MNS ASTER
[Termes IGN] occupation du sol
[Termes IGN] utilisation du sol
[Termes IGN] zone arideRésumé : (auteur) Water is a key natural resource on earth, especially in arid and semi-arid regions with limited rainfall amounts. The impact of drought could be alleviated via constructing dams to ensure water storage and supply. The aim of the present study is to detect proper sites for planning rainwater harvesting (RWH) in the western desert of Iraq using both the Boolean overlay and the weighted linear combination (WLC) in the geographic information system (GIS). Potential sites of rainwater harvesting were identified using multi-criteria evaluation. Several criteria were used, including physical characteristics and climatological and socio-economic conditions to determine the proper location for RWH. Seven WLC parameters were used in the site selection process: runoff, slope, soil texture, land use/land cover (LULC), distance from irrigated lands, distance from residential areas, and distance from roads, while the Boolean overlay method used the stream order and distance from faults parameters. The results indicated that the final map can be classified into three classes of suitability, i.e., (i) highly suitable with 6% coverage (117 km2), (ii) moderately suitable with 4% coverage (78 km2), and (iii) least suitable with 90% coverage (1758 km2) of the basin area. It was indicated that only three earthen dams could be executed along streams. This low data-intensive and cost-effective methodology offered can be adopted in arid regions to embrace RWH as an efficient strategy to handle growing water scarcity. The proposed method could be adopted in many countries that have identical environmental and physical conditions to the western desert of Iraq, which is the case in most arid regions. Numéro de notice : A2021-411 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s12518-020-00342-3 Date de publication en ligne : 10/10/2020 En ligne : https://doi.org/10.1007/s12518-020-00342-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97736
in Applied geomatics > vol 13 n° 2 (June 2021) . - pp 235 - 248[article]Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia / Peter Kitin in Annals of Forest Science, vol 78 n° 2 (June 2021)
[article]
Titre : Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia Type de document : Article/Communication Auteurs : Peter Kitin, Auteur ; Edgard Espinoza, Auteur ; Hans Beeckman, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : Article 31 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] abattage (sylviculture)
[Termes IGN] Afzelia (genre)
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] bois
[Termes IGN] espèce végétale
[Termes IGN] forêt tropicale
[Termes IGN] identification de plantes
[Termes IGN] signature spectrale
[Termes IGN] spectrométrie
[Termes IGN] taxinomie
[Termes IGN] temps réelRésumé : (Auteur) Distinct chemical fingerprints of the wood of Afzelia pachyloba and A. bipindensis demonstrated an effective method for identifying these two commercially important species. Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) allowed high-throughput examination of chemotypes with vast potential in taxonomic, ecological, and forensic research of wood.
Context : Afzelia is a genus of valuable tropical timber trees. Accurate identification of wood is required for the prevention of illicit timber trade as well as for certification purposes in the forest and wood products industry. For many years, particular interest has been focused on attempts to distinguish the wood of A. bipindensis Harms from A. pachyloba Harms due to substantial differences in the commercial values of these two species.
Aims : We investigated if wood chemical signatures and microscopy could identify the wood of A. bipindensis and A. pachyloba.
Methods : We used two approaches, namely metabolome profiling by direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) and wood microstructure by light microscopy and SEM. In all, we analyzed samples from 89 trees of A. bipindensis, and A. pachyloba.
Results : The two species could not be separated by the IAWA standard microscopic wood features. SEM analysis showed considerable variation in the morphology of vestured pits; however, this variation was not species-specific. In contrast, DART-TOFMS followed by unsupervised statistics (Discriminant Analysis of Principal Components) showed distinct metabolome signatures of the two species.
Conclusion : DART-TOFMS provides a rapid method for wood identification that can be easily applied to small heartwood samples. Time- and cost-effective classification of wood chemotypes by DART-TOFMS can have potential applications in various research questions in forestry, wood science, tree-ecophysiology, and forensics.Numéro de notice : A2021-327 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01024-1 Date de publication en ligne : 31/03/2021 En ligne : https://doi.org/10.1007/s13595-020-01024-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97488
in Annals of Forest Science > vol 78 n° 2 (June 2021) . - Article 31[article]Identifying the effects of chronic saltwater intrusion in coastal floodplain swamps using remote sensing / Elliott White Jr in Remote sensing of environment, vol 258 (June 2021)PermalinkImproving tree biomass models through crown ratio patterns and incomplete data sources / Maria Menéndez-Miguélez in European Journal of Forest Research, vol 140 n° 3 (June 2021)PermalinkOn the relationship between normalized difference vegetation index and land surface temperature: MODIS-based analysis in a semi-arid to arid environment / Salahuddin M. Jaber in Geocarto international, vol 36 n° 10 ([01/06/2021])PermalinkProvisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change / Debojyoti Chakraborty in Annals of Forest Science, vol 78 n° 2 (June 2021)PermalinkRapid ecosystem change at the southern limit of the Canadian Arctic, Torngat Mountains National Park / Emma L. Davis in Remote sensing, vol 13 n° 11 (June-1 2021)PermalinkThe social drift of trees. Consequence for growth trend detection, stand dynamics, and silviculture / Hans Pretzsch in European Journal of Forest Research, vol 140 n° 3 (June 2021)PermalinkAnalysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data / Celina Aznarez in Remote sensing, vol 13 n°10 (May-2 2021)PermalinkCanopy openness and exclusion of wild ungulates act synergistically to improve oak natural regeneration / Julien Barrere in Forest ecology and management, Vol 487 ([01/05/2021])PermalinkDetection of rainstorm pattern in arid regions using MODIS NDVI time series analysis / Mohamed E. Hereher in Geocarto international, vol 36 n° 8 ([01/05/2021])PermalinkEvaluation of light pollution in global protected areas from 1992 to 2018 / Haowei Mu in Remote sensing, vol 13 n° 9 (May-1 2021)PermalinkForest fragmentation assessment using field-based sampling data from forest inventories / Habib Ramezani in Scandinavian journal of forest research, vol 36 n° 4 ([01/05/2021])PermalinkLearning from multimodal and multitemporal earth observation data for building damage mapping / Bruno Adriano in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)PermalinkMapping and quantification of the dwarf eelgrass Zostera noltii using a random forest algorithm on a SPOT 7 satellite image / Salma Benmokhtar in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)PermalinkThe urban governance configuration: A conceptual framework for understanding complexity and enhancing transitions to greater sustainability in cities / Isa Baud in Geography compass, vol 15 n° 5 (May 2021)PermalinkScalable deep learning to identify brick kilns and aid regulatory capacity / Jihyeon Lee in Proceedings of the National Academy of Sciences of the United States of America PNAS, vol 118 n° 17 (27 April 2021)PermalinkDetecting archaeological features with airborne laser scanning in the alpine tundra of Sápmi, Northern Finland / Oula Seitsonen in Remote sensing, vol 13 n° 8 (April-2 2021)PermalinkPotentialité des données satellitaires Sentinel-2 pour la cartographie de l’impact des feux de végétation en Afrique tropicale : application au Togo / Yawo Konko in Bois et forêts des tropiques, n° 347 ([02/04/2021])PermalinkChemical interaction between Quercus pubescens and its companion species is not emphasized under drought stress / H. Hashoum in European Journal of Forest Research, vol 140 n° 2 (April 2021)PermalinkEvolution of the beaches in the regional Park of Salinas and Arenales of San Pedro del Pinatar (Southeast of Spain) (1899–2019) / Daniel Ibarra-Marinas in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)PermalinkGIS-based multi-criteria analysis of the suitability of western Siberian forest-steppe lands / V.K. Kalichkin in Annals of GIS, vol 27 n° 2 (April 2021)Permalink