Descripteur
Termes IGN > géomatique > base de données localisées > modèle conceptuel de données localisées > modèle sémantique de données
modèle sémantique de donnéesSynonyme(s)modèle sémantiqueVoir aussi |
Documents disponibles dans cette catégorie (46)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A hierarchical model for semantic trajectories and event extraction in indoor and outdoor spaces / Hassan Noureddine (2022)
Titre : A hierarchical model for semantic trajectories and event extraction in indoor and outdoor spaces Type de document : Thèse/HDR Auteurs : Hassan Noureddine, Auteur ; Christophe Claramunt, Directeur de thèse ; Cyril Ray, Directeur de thèse Editeur : Brest : Université de Bretagne Occidentale Année de publication : 2022 Importance : 113 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université de Bretagne Occidentale, spécialité GéomatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] approche hiérarchique
[Termes IGN] détection d'événement
[Termes IGN] données spatiotemporelles
[Termes IGN] espace intérieur
[Termes IGN] espace urbain
[Termes IGN] mobilité humaine
[Termes IGN] modèle sémantique de données
[Termes IGN] modélisation 3D
[Termes IGN] ville intelligenteIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The interest in exploiting crowd-sourced information has recently emerged as it can bring many valuable benefits for many application domains. This is particularly the case for realtime mobile crowd-sourcing data often available in indoor and outdoor environments. Such data offers many opportunities for analysing human mobility, especially when associated with multidimensional contextual information. Considering the diversity of multi-environment spaces and where mobility occurs, raises several data modelling, management and processing research challenges.When associated with multiple contextual information, indoor and outdoor mobility analysis stresses the need for appropriate and flexible data abstractions at the modelling level to represent the spatial, temporal and semantic data that arise in a smart city environment. While recent approaches often considered this issue using the common stops and moves model, this does not completely cover the multi-dimensional contextual information that arises in real-time on humans navigating through indoor and outdoor spaces. It also increases the need for computing systems and data architectures to process spatio-temporal data in a timely manner when searching for complex mobility events of interest. Despite the ability to represent spatio-temporal events, such systems require well-defined and flexible data manipulation languages to support abstraction and composition mechanisms for analysing urban mobilities.This thesis aims to provide the necessary constructs for analysing mobile crowd-sensed information that arises in indoor and outdoor spaces. In order to better understand urban mobility data in batch and real-time, we consider a broad range of contextual information that can be associated with mobility data. We introduce an indoor and outdoor spatial data model represented as a multi-layered graph and constructed with crowd-sourced trajectory data. The novelty of the approach lies in the fact that it provides a homogeneous and flexible hierarchical indoor and outdoor spatial model that can be associated with crowd-sensed trajectory data on the fly. Our modelling approach defines generic and flexible semantic trajectories considering multiple collaborative data semantics at different granularities and where trajectory segmentation relies on evolving semantic values. This thesis develops a modelling framework for complex events applied to our indoor and outdoor semantic trajectory model based on a formallanguage that establishes the required operations for the composition of the events. We have implemented data pipelines to examine our approach’s efficiency. The whole approach is experimented and applied to participatory data from a real case study to show its suitability, scalability and performance. Note de contenu : 1- Introduction
2- Related work
3- Semantic trajectory data model For indoor and outdoor spaces
4- Composite event extraction from stream of semantic trajectories
5- ConclusionNuméro de notice : 24080 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Géomatique : Brest : 2022 Organisme de stage : Institut de Recherche de l’Ecole Navale DOI : sans En ligne : https://theses.hal.science/tel-03888591 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102293 Improving trajectory estimation using 3D city models and kinematic point clouds / Lucas Lucks in Transactions in GIS, Vol 25 n° 1 (February 2021)
[article]
Titre : Improving trajectory estimation using 3D city models and kinematic point clouds Type de document : Article/Communication Auteurs : Lucas Lucks, Auteur ; Lasse Klingbeil, Auteur ; Lutz Plümer, Auteur ; Youness Dehbi, Auteur Année de publication : 2021 Article en page(s) : pp 238 - 260 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] algorithme ICP
[Termes IGN] bruit (théorie du signal)
[Termes IGN] centrale inertielle
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] interpolation
[Termes IGN] milieu urbain
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle sémantique de données
[Termes IGN] navigation autonome
[Termes IGN] semis de pointsRésumé : (Auteur) Accurate and robust positioning of vehicles in urban environments is of high importance for autonomous driving or mobile mapping. In mobile mapping systems, a simultaneous mapping of the environment using laser scanning and an accurate positioning using global navigation satellite systems are targeted. This requirement is often not guaranteed in shadowed cities where global navigation satellite system signals are usually disturbed, weak or even unavailable. We propose a novel approach which incorporates prior knowledge (i.e., a 3D city model of the environment) and improves the trajectory. The recorded point cloud is matched with the semantic city model using a point‐to‐plane iterative closest point method. A pre‐classification step enables an informed sampling of appropriate matching points. Random forest is used as classifier to discriminate between facade and remaining points. Local inconsistencies are tackled by a segmentwise partitioning of the point cloud where an interpolation guarantees a seamless transition between the segments. The general applicability of the method implemented is demonstrated on an inner‐city data set recorded with a mobile mapping system. Numéro de notice : A2021-188 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12719 Date de publication en ligne : 02/01/2021 En ligne : https://doi.org/10.1111/tgis.12719 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97157
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 238 - 260[article]Geometric computer vision: omnidirectional visual and remotely sensed data analysis / Pouria Babahajiani (2021)
Titre : Geometric computer vision: omnidirectional visual and remotely sensed data analysis Type de document : Thèse/HDR Auteurs : Pouria Babahajiani, Auteur ; Moncef Gabbouj, Directeur de thèse Editeur : Tampere [Finlande] : Tampere University Année de publication : 2021 Importance : 147 p. Format : 21 x 30 cm ISBN/ISSN/EAN : 978-952-03-1979-3 Note générale : bibliographie
Accademic Dissertation, Tampere University, Faculty of Information Technology and Communication Sciences FinlandLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] chaîne de traitement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] effet de profondeur cinétique
[Termes IGN] espace public
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] image Streetview
[Termes IGN] image terrestre
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle sémantique de données
[Termes IGN] réalité virtuelle
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] vision par ordinateur
[Termes IGN] zone urbaineIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Information about the surrounding environment perceived by the human eye is one of the most important cues enabled by sight. The scientific community has put a great effort throughout time to develop methods for scene acquisition and scene understanding using computer vision techniques. The goal of this thesis is to study geometry in computer vision and its applications. In computer vision, geometry describes the topological structure of the environment. Specifically, it concerns measures such as shape, volume, depth, pose, disparity, motion, and optical flow, all of which are essential cues in scene acquisition and understanding.
This thesis focuses on two primary objectives. The first is to assess the feasibility of creating semantic models of urban areas and public spaces using geometrical features coming from LiDAR sensors. The second objective is to develop a practical Virtual Reality (VR) video representation that supports 6-Degrees-of-Freedom (DoF) head motion parallax using geometric computer vision and machine learning. The thesis’s first contribution is the proposal of semantic segmentation of the 3D LiDAR point cloud and its applications. The ever-growing demand for reliable mapping data, especially in urban environments, has motivated mobile mapping systems’ development. These systems acquire high precision data and, in particular 3D LiDAR point clouds and optical images. A large amount of data and their diversity make data processing a complex task. A complete urban map data processing pipeline has been developed, which annotates 3D LiDAR points with semantic labels. The proposed method is made efficient by combining fast rule-based processing for building and street surface segmentation and super-voxel-based feature extraction and classification for the remaining map elements (cars, pedestrians, trees, and traffic signs). Based on the experiments, the rule-based processing stage provides substantial improvement not only in computational time but also in classification accuracy. Furthermore, two back ends are developed for semantically labeled data that exemplify two important applications: (1) 3D high definition urban map that reconstructs a realistic 3D model using input labeled point cloud, and (2) semantic segmentation of 2D street view images. The second contribution of the thesis is the development of a practical, fast, and robust method to create high-resolution Depth-Augmented Stereo Panoramas (DASP) from a 360-degree VR camera. A novel and complete optical flow-based pipeline is developed, which provides stereo 360-views of a real-world scene with DASP. The system consists of a texture and depth panorama for each eye. A bi-directional flow estimation network is explicitly designed for stitching and stereo depth estimation, which yields state-of-the-art results with a limited run-time budget. The proposed architecture explicitly leverages geometry by getting both optical flow ground-truths. Building architectures that use this knowledge simplifies the learning problem. Moreover, a 6-DoF testbed for immersive content quality assessment is proposed. Modern machine learning techniques have been used to design the proposed architectures addressing many core computer vision problems by exploiting the enriched information coming from 3D scene structures. The architectures proposed in this thesis are practical systems that impact today’s technologies, including autonomous vehicles, virtual reality, augmented reality, robots, and smart-city infrastructures.Note de contenu : 1- Introduction
2- Geometry in Computer Vision
3- Contributions
4- ConclusionNuméro de notice : 28323 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD Thesis : Computing and Electrical Engineering : Tempere, Finland : 2021 DOI : sans En ligne : https://trepo.tuni.fi/handle/10024/131379 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98342 Ontology of core concept data types for answering geo-analytical questions / Simon Scheider in Journal of Spatial Information Science, JoSIS, n° 20 (2020)
[article]
Titre : Ontology of core concept data types for answering geo-analytical questions Type de document : Article/Communication Auteurs : Simon Scheider, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] concept
[Termes IGN] données localisées
[Termes IGN] information géographique
[Termes IGN] modèle sémantique de données
[Termes IGN] ontologie
[Termes IGN] requête spatiale
[Termes IGN] système d'information géographiqueRésumé : (auteur) In geographic information systems (GIS), analysts answer questions by designing workflows that transform a certain type of data into a certain type of goal. Semantic data types help constrain the application of computational methods to those that are meaningful for such a goal. This prevents pointless computations and helps analysts design effective workflows. Yet, to date it remains unclear which types would be needed in order to ease geo-analytical tasks. The data types and formats used in GIS still allow for huge amounts of syntactically possible but nonsensical method applications. Core concepts of spatial information and related geo-semantic distinctions have been proposed as abstractions to help analysts formulate analytic questions and to compute appropriate answers over geodata of different formats. In essence, core concepts reflect particular interpretations of data which imply that certain transformations are possible. However, core concepts usually remain implicit when operating on geodata, since a concept can be represented in a variety of forms. A central question therefore is: Which semantic types would be needed to capture this variety and its implications for geospatial analysis? In this article, we propose an ontology design pattern of core concept data types that help answer geo-analytical questions. Based on a scenario to compute a liveability atlas for Amsterdam, we show that diverse kinds of geo-analytical questions can be answered by this pattern in terms of valid, automatically constructible GIS workflows using standard sources. Numéro de notice : A2020-850 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.5311/JOSIS.2020.20.555 Date de publication en ligne : 30/06/2020 En ligne : https://josis.org/index.php/josis/article/view/125 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98665
in Journal of Spatial Information Science, JoSIS > n° 20 (2020)[article]Sketch maps for searching in spatial data / Ali Zare Zardiny in Transactions in GIS, Vol 24 n° 3 (June 2020)
[article]
Titre : Sketch maps for searching in spatial data Type de document : Article/Communication Auteurs : Ali Zare Zardiny, Auteur ; Farshad Hakimpour, Auteur ; Mozhdeh Shahbazi, Auteur Année de publication : 2020 Article en page(s) : pp 780 - 808 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] analyse des correspondances
[Termes IGN] appariement de données localisées
[Termes IGN] carte thématique
[Termes IGN] cartographie collaborative
[Termes IGN] croquis topographique
[Termes IGN] modèle sémantique de données
[Termes IGN] niveau d'abstraction
[Termes IGN] point d'intérêtRésumé : (Auteur) Much research has been conducted on the use of sketch maps to search in spatial databases, nevertheless, they have faced challenges, such as modeling of the data abstraction level, aggregated features in sketches, modeling of semantic aspects of data, data redundancy, and evaluation of the results. Considering these challenges, in this article a new solution is presented for searching in databases based on data matching. The main difference between this solution and the other approaches lies in the parameters introduced to match data and how to solve the matching problem. Using geometrical, topological, and semantic parameters in the matching, as well as performing the matching process in the two phases of partial and global, has resulted in an of about 78%. The evaluation process is performed based on the matching parameters and the matching procedure; finally, the result is acceptable compared to previous implementations. Numéro de notice : A2020-247 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12619 Date de publication en ligne : 01/04/2020 En ligne : https://doi.org/10.1111/tgis.12619 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95312
in Transactions in GIS > Vol 24 n° 3 (June 2020) . - pp 780 - 808[article]A review of techniques for 3D reconstruction of indoor environments / Zhizhong Kang in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)PermalinkDiagnostic qualité et apurement des données de mobilité quotidienne issues de l’enquête mixte et longitudinale Mobi’Kids / Sylvestre Duroudier in Revue internationale de géomatique, vol 30 n° 1-2 (janvier - juin 2020)PermalinkModélisation sémantique et programmation générative pour une simulation multi-agent dans le contexte de gestion de catastrophe / Claire Prudhomme in Revue internationale de géomatique, vol 30 n° 1-2 (janvier - juin 2020)PermalinkUn modèle pour l’intégration spatiale et temporelle de données géolocalisées / Helbert Arenas in Revue internationale de géomatique, vol 28 n° 2 (avril - juin 2018)PermalinkPrivacy-preserving detection of anomalous phenomena in crowdsourced environmental sensing using fine-grained weighted voting / Mihai Maruseac in Geoinformatica, vol 21 n° 4 (October - December 2017)PermalinkStatistical Relational Learning of Grammar Rules for 3D Building Reconstruction / Youness Dehbi in Transactions in GIS, vol 21 n° 1 (February 2017)PermalinkConceptualising the geographic world: the dimensions of negotiation in crowdsourced cartography / Andrea Ballatore in International journal of geographical information science IJGIS, vol 29 n° 12 (December 2015)PermalinkSuperpixel-based graphical model for remote sensing image mapping / Guangyun Zhang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 11 (November 2015)PermalinkCONSTAnT – A conceptual data model for semantic Trajectories of moving objects / Vania Bogorny in Transactions in GIS, vol 18 n° 1 (February 2014)PermalinkModèle pour un serveur de données géographiques. Les services web géographiques WMS et WFS / Nissrine Souissi in Revue internationale de géomatique, vol 23 n° 2 (juin - aout 2013)Permalink