Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Océanie (géographie politique) > Australie > Australie occidentale (Australie)
Australie occidentale (Australie) |
Documents disponibles dans cette catégorie (9)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Vertical deformation and residual altimeter systematic errors around continental Australia inferred from a Kalman-based approach / Mohammad-Hadi Rezvani in Journal of geodesy, vol 96 n° 12 (December 2022)
[article]
Titre : Vertical deformation and residual altimeter systematic errors around continental Australia inferred from a Kalman-based approach Type de document : Article/Communication Auteurs : Mohammad-Hadi Rezvani, Auteur ; Christopher S. Watson, Auteur ; Matt A. King, Auteur Année de publication : 2022 Article en page(s) : n° 96 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] altimètre
[Termes IGN] Australie occidentale (Australie)
[Termes IGN] déformation verticale de la croute terrestre
[Termes IGN] données altimétriques
[Termes IGN] données marégraphiques
[Termes IGN] erreur systématique
[Termes IGN] filtre de Kalman
[Termes IGN] montée du niveau de la mer
[Termes IGN] série temporelle
[Termes IGN] variabilitéRésumé : (auteur) We further developed a space–time Kalman approach to investigate time-fixed and time-variable signals in vertical land motion (VLM) and residual altimeter systematic errors around the Australian coast, through combining multi-mission absolute sea-level (ASL), relative sea-level from tide gauges (TGs) and Global Positioning System (GPS) height time series. Our results confirmed coastal subsidence in broad agreement with GPS velocities and unexplained by glacial isostatic adjustment alone. VLM determined at individual TGs differs from spatially interpolated GPS velocities by up to ~ 1.5 mm/year, yielding a ~ 40% reduction in RMSE of geographic ASL variability at TGs around Australia. Our mission-specific altimeter error estimates are small but significant (typically within ~ ± 0.5–1.0 mm/year), with negligible effect on the average ASL rate. Our circum-Australia ASL rate is higher than previous results, suggesting an acceleration in the ~ 27-year time series. Analysis of the time-variability of altimeter errors confirmed stability for most missions except for Jason-2 with an anomaly reaching ~ 2.8 mm/year in the first ~ 3.5 years of operation, supported by analysis from the Bass Strait altimeter validation facility. Data predominantly from the reference missions and located well off narrow shelf regions was shown to bias results by as much as ~ 0.5 mm/year and highlights that residual oceanographic signals remain a fundamental limitation. Incorporating non-reference-mission measurements well on the shelf helped to mitigate this effect. Comparing stacked nonlinear VLM estimates and altimeter systematic errors with the El Niño-Southern Oscillation shows weak correlation and suggests our approach improves the ability to explore nonlinear localized signals and is suitable for other regional- and global-scale studies. Numéro de notice : A2022-897 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01680-3 Date de publication en ligne : 05/12/2022 En ligne : https://doi.org/10.1007/s00190-022-01680-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102251
in Journal of geodesy > vol 96 n° 12 (December 2022) . - n° 96[article]Partitions of normalised multiple regression equations for datum transformations / Andrew Carey Ruffhead in Boletim de Ciências Geodésicas, vol 28 n° 1 ([01/03/2022])
[article]
Titre : Partitions of normalised multiple regression equations for datum transformations Type de document : Article/Communication Auteurs : Andrew Carey Ruffhead, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] Australie occidentale (Australie)
[Termes IGN] Grande-Bretagne
[Termes IGN] régression multiple
[Termes IGN] Slovénie
[Termes IGN] transformation de coordonnéesRésumé : (auteur) Multiple regression equations (MREs) provide an empirical direct method of transforming coordinates between geodetic datums. Since they offer a means of modelling distortions, they are capable of a more accurate fit to datum-shift datasets than more basic direct methods. MRE models of datum shifts traditionally consist of polynomials based on relative latitude and longitude. However, the limited availability of low-power terms often leads to high-power terms being included, and these are a potential cause of instability. This paper introduces three variations based on simple partitions and 2 or 4 smoothly conjoined polynomials. The new types are North/South, East/West and Four-Quadrant. They increase the availability of low-order terms, enabling distortions to be modelled with fewer side effects. Case studies in Great Britain, Slovenia and Western Australia provide examples of partitioned MREs that are more accurate than conventional MREs with the same number of terms. Numéro de notice : A2022-684 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans En ligne : https://revistas.ufpr.br/bcg/article/view/86199/46467 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101548
in Boletim de Ciências Geodésicas > vol 28 n° 1 [01/03/2022][article]Using machine learning to map Western Australian landscapes for mineral exploration / Thomas Albrecht in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)
[article]
Titre : Using machine learning to map Western Australian landscapes for mineral exploration Type de document : Article/Communication Auteurs : Thomas Albrecht, Auteur ; Ignacio Gonzalez-Alvarez, Auteur ; Jens Klump, Auteur Année de publication : 2021 Article en page(s) : n° 459 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] Australie occidentale (Australie)
[Termes IGN] cartographie automatique
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] géomorphologie
[Termes IGN] modèle numérique de surface
[Termes IGN] prospection minérale
[Termes IGN] Python (langage de programmation)Résumé : (auteur) Landscapes evolve due to climatic conditions, tectonic activity, geological features, biological activity, and sedimentary dynamics. Geological processes at depth ultimately control and are linked to the resulting surface features. Large regions in Australia, West Africa, India, and China are blanketed by cover (intensely weathered surface material and/or later sediment deposition, both up to hundreds of metres thick). Mineral exploration through cover poses a significant technological challenge worldwide. Classifying and understanding landscape types and their variability is of key importance for mineral exploration in covered regions. Landscape variability expresses how near-surface geochemistry is linked to underlying lithologies. Therefore, landscape variability mapping should inform surface geochemical sampling strategies for mineral exploration. Advances in satellite imaging and computing power have enabled the creation of large geospatial data sets, the sheer size of which necessitates automated processing. In this study, we describe a methodology to enable the automated mapping of landscape pattern domains using machine learning (ML) algorithms. From a freely available digital elevation model, derived data, and sample landclass boundaries provided by domain experts, our algorithm produces a dense map of the model region in Western Australia. Both random forest and support vector machine classification achieve approximately 98% classification accuracy with a reasonable runtime of 48 minutes on a single Intel® Core™ i7-8550U CPU core. We discuss computational resources and study the effect of grid resolution. Larger tiles result in a more contiguous map, whereas smaller tiles result in a more detailed and, at some point, noisy map. Diversity and distribution of landscapes mapped in this study support previous results. In addition, our results are consistent with the geological trends and main basement features in the region. Mapping landscape variability at a large scale can be used globally as a fundamental tool for guiding more efficient mineral exploration programs in regions under cover. Numéro de notice : A2021-546 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10070459 Date de publication en ligne : 06/07/2021 En ligne : https://doi.org/10.3390/ijgi10070459 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98048
in ISPRS International journal of geo-information > vol 10 n° 7 (July 2021) . - n° 459[article]Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data / Ehsan Farahbakhsh in International Journal of Remote Sensing IJRS, vol 41 n°5 (01 - 08 février 2020)
[article]
Titre : Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data Type de document : Article/Communication Auteurs : Ehsan Farahbakhsh, Auteur ; Rohitash Chandra, Auteur ; Hugo K. H. Olierook, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1760 - 1787 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Australie occidentale (Australie)
[Termes IGN] cartographie géologique
[Termes IGN] détection de contours
[Termes IGN] digue
[Termes IGN] faille géologique
[Termes IGN] filtre
[Termes IGN] image Landsat-8
[Termes IGN] linéament
[Termes IGN] tectonique
[Termes IGN] vision par ordinateurRésumé : (auteur) The extraction of tectonic lineaments from digital satellite data is a fundamental application in remote sensing. The location of tectonic lineaments such as faults and dykes are of interest for a range of applications, particularly because of their association with hydrothermal mineralization. Although a wide range of applications have utilized computer vision techniques, a standard workflow for application of these techniques to tectonic lineament extraction is lacking. We present a framework for extracting tectonic lineaments using computer vision techniques. The proposed framework is a combination of edge detection and line extraction algorithms for extracting tectonic lineaments using optical remote sensing data. It features ancillary computer vision techniques for reducing data dimensionality, removing noise and enhancing the expression of lineaments. The efficiency of two convolutional filters are compared in terms of enhancing the lineaments. We test the proposed framework on Landsat 8 data of a mineral-rich portion of the Gascoyne Province in Western Australia. To validate the results, the extracted lineaments are compared to geologically mapped structures by the Geological Survey of Western Australia (GSWA). The results show that the best correlation between our extracted tectonic lineaments and the GSWA tectonic lineament map is achieved by applying a minimum noise fraction transformation and a Laplacian filter. Application of a directional filter shows a strong correlation with known sites of hydrothermal mineralization. Hence, our method using either filter can be used for mineral prospectivity mapping in other regions where faults are exposed and observable in optical remote sensing data. Numéro de notice : A2020-464 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01431161.2019.1674462 Date de publication en ligne : 11/10/2019 En ligne : https://doi.org/10.1080/01431161.2019.1674462 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94902
in International Journal of Remote Sensing IJRS > vol 41 n°5 (01 - 08 février 2020) . - pp 1760 - 1787[article]Mapping the distribution of ferric iron minerals on a vertical mine face using derivative analysis of hyperspectral imagery (430–970 nm) / R. Murphy in ISPRS Journal of photogrammetry and remote sensing, vol 75 (January 2013)
[article]
Titre : Mapping the distribution of ferric iron minerals on a vertical mine face using derivative analysis of hyperspectral imagery (430–970 nm) Type de document : Article/Communication Auteurs : R. Murphy, Auteur ; S. Monteiro, Auteur Année de publication : 2013 Article en page(s) : pp 29 - 39 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Advanced Visible & Near Infrared Radiometer
[Termes IGN] analyse d'image numérique
[Termes IGN] Australie occidentale (Australie)
[Termes IGN] dérivée
[Termes IGN] image hyperspectrale
[Termes IGN] mine de fer
[Termes IGN] photographie infrarouge couleur
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance spectraleRésumé : (Auteur) Hyperspectral imagery is used to map the distribution of iron and separate iron ore from shale (a waste product) on a vertical mine face in an open-pit mine in the Pilbara, Western Australia. Vertical mine faces have complex surface geometries which cause large spatial variations in the amount of incident and reflected light. Methods used to analyse imagery must minimise these effects whilst preserving any spectral variations between rock types and minerals. Derivative analysis of spectra to the 1st-, 2nd- and 4th-order is used to do this. To quantify the relative amounts and distribution of iron, the derivative spectrum is integrated across the visible and near infrared spectral range (430–970 nm) and over those wavelength regions containing individual peaks and troughs associated with specific iron absorption features. As a test of this methodology, results from laboratory spectra acquired from representative rock samples were compared with total amounts of iron minerals from X-ray diffraction (XRD) analysis. Relationships between derivatives integrated over the visible near-infrared range and total amounts (% weight) of iron minerals were strongest for the 4th- and 2nd-derivative (R2 = 0.77 and 0.74, respectively) and weakest for the 1st-derivative (R2 = 0.56). Integrated values of individual peaks and troughs showed moderate to strong relationships in 2nd- (R2 = 0.68–0.78) and 4th-derivative (R2 = 0.49–0.78) spectra. The weakest relationships were found for peaks or troughs towards longer wavelengths. The same derivative methods were then applied to imagery to quantify relative amounts of iron minerals on a mine face. Before analyses, predictions were made about the relative abundances of iron in the different geological zones on the mine face, as mapped from field surveys. Integration of the whole spectral curve (430–970 nm) from the 2nd- and 4th-derivative gave results which were entirely consistent with predictions. Conversely, integration of the 1st-derivative gave results that did not fit with predictions nor distinguish between zones with very large and small amounts of iron oxide. Classified maps of ore and shale were created using a simple level-slice of the 1st-derivative reflectance at 702, 765 and 809 nm. Pixels classified as shale showed a similar distribution to kaolinite (an indicator of shales in the region), as mapped by the depth of the diagnostic kaolinite absorption feature at 2196 nm. Standard statistical measures of classification performance (accuracy, precision, recall and the Kappa coefficient of agreement) indicated that nearly all of the pixels were classified correctly using 1st-derivative reflectance at 765 and 809 nm. These results indicate that data from the VNIR (430–970 nm) can be used to quantify, without a priori knowledge, the total amount of iron minerals and to distinguish ore from shale on vertical mine faces. Numéro de notice : A2013-030 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2012.09.014 En ligne : https://doi.org/10.1016/j.isprsjprs.2012.09.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32168
in ISPRS Journal of photogrammetry and remote sensing > vol 75 (January 2013) . - pp 29 - 39[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013011 RAB Revue Centre de documentation En réserve L003 Disponible Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors / R.J. Murphy in IEEE Transactions on geoscience and remote sensing, vol 50 n° 8 (August 2012)PermalinkTuning a gravimetric quasigeoid to GPS-levelling by non-stationary least-squares collocation / N. Darbehesti in Journal of geodesy, vol 84 n° 7 (July 2010)PermalinkArthropods in coarse woody debris in jarrah forest and rehabilitated bauxite mines in Western Australia / John M. Koch in Annals of Forest Science, vol 67 n° 1 (January-February 2010)PermalinkInterpretation of remotely sensed data using guided techniques for land cover analysis / Julien Flack (1995)Permalink