Descripteur
Termes IGN > aménagement > infrastructure > réseau technique > réseau de transport > réseau routier
réseau routierSynonyme(s)VoirieVoir aussi |
Documents disponibles dans cette catégorie (543)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Mapping urban fingerprints of odonyms automatically extracted from French novels / Ludovic Moncla in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
[article]
Titre : Mapping urban fingerprints of odonyms automatically extracted from French novels Type de document : Article/Communication Auteurs : Ludovic Moncla , Auteur ; Mauro Gaio, Auteur ; Thierry Joliveau, Auteur ; Yves-François Le Lay, Auteur ; Pierre-Olivier Mazagol, Auteur Année de publication : 2019 Article en page(s) : pp 2477 - 2497 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Toponymie
[Termes IGN] dix-neuvième siècle
[Termes IGN] empreinte
[Termes IGN] extraction automatique
[Termes IGN] Geoparsing
[Termes IGN] langage naturel (informatique)
[Termes IGN] littérature
[Termes IGN] odonymie
[Termes IGN] Paris (75)
[Termes IGN] reconnaissance de noms
[Termes IGN] route
[Termes IGN] traitement du langage naturelRésumé : (auteur) In this paper, we propose and discuss a methodology to map the spatial fingerprints of novels and authors based on all of the named urban roads (i.e., odonyms) extracted from novels. We present several ways to explore Parisian space and fictional landscapes by interactively and simultaneously browsing geographical space and literary text. Our project involves building a platform capable of retrieving, mapping and analyzing the occurrences of named urban roads in novels in which the action occurs wholly or partly in Paris. This platform will be used in several areas, such as cultural tourism, urban research, and literary analysis. The paper focuses on extracting named urban roads and mapping the results for a sample of 31 novels published between 1800 and 1914. Two approaches to the annotation of odonyms are compared. First, we describe a proof of concept using queries made via the TXM textual analysis platform. Then, we describe an automatic process using a natural language processing (NLP) method. Additionally, we mention how the geosemantic information annotated from the text (e.g., a structure combining verbs, spatial relations, named entities, adjectives and adverbs) can be used to automatically characterize the semantic content associated with named urban roads. Numéro de notice : A2019-427 Affiliation des auteurs : non IGN Thématique : TOPONYMIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1584804 Date de publication en ligne : 17/03/2019 En ligne : https://doi.org/10.1080/13658816.2019.1584804 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93560
in International journal of geographical information science IJGIS > vol 33 n° 12 (December 2019) . - pp 2477 - 2497[article]Analysing the positional accuracy of GNSS multi-tracks obtained from VGI sources to generate improved 3D mean axes / Antonio Tomás Mozas-Calvache in International journal of geographical information science IJGIS, vol 33 n° 11 (November 2019)
[article]
Titre : Analysing the positional accuracy of GNSS multi-tracks obtained from VGI sources to generate improved 3D mean axes Type de document : Article/Communication Auteurs : Antonio Tomás Mozas-Calvache, Auteur ; Francisco Javier Ariza-López, Auteur Année de publication : 2019 Article en page(s) : pp 2170 - 2187 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] axe médian
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données localisées 3D
[Termes IGN] données localisées des bénévoles
[Termes IGN] positionnement par GNSS
[Termes IGN] précision du positionnement
[Termes IGN] qualité des données
[Termes IGN] réseau routier
[Termes IGN] trace GPS
[Termes IGN] vitesse de déplacementRésumé : (auteur) The sharing of Global Navigation Satellite System (GNSS) tracks on the Internet is increasing enormously. Every day a great number of users capture routes using different devices and share these data. Individually these tracks present a poor positional accuracy because these devices obtain positions with accuracy of about 5-10 metres. In addition, they are usually captured for navigation and not for surveying. However, we can take advantage of the great quantity of tracks of the same linear element in order to obtain a more accurate solution. This study analyses this possibility using a wide set of tracks obtained in known conditions. We emulated those tracks obtained by Volunteered Geographic Information (VGI) users and we compared the mean axis obtained using all tracks with others obtained from a more accurate source. Additionally, we analyse the displacement of other axes obtained by varying several parameters such as the number of tracks and their length or by dividing the route into sections in function of sinuosity, etc. The results have shown an improved 3D mean axis and the viability of the method proposed in this study in order to use axes obtained from several tracks in maps at certain scales. Numéro de notice : A2019-429 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1645335 Date de publication en ligne : 26/07/2019 En ligne : https://doi.org/10.1080/13658816.2019.1645335 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93563
in International journal of geographical information science IJGIS > vol 33 n° 11 (November 2019) . - pp 2170 - 2187[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 079-2019112 RAB Revue Centre de documentation En réserve L003 Disponible 079-2019111 RAB Revue Centre de documentation En réserve L003 Disponible A space-time varying graph for modelling places and events in a network / Ikechukwu Maduako in International journal of geographical information science IJGIS, vol 33 n° 10 (October 2019)
[article]
Titre : A space-time varying graph for modelling places and events in a network Type de document : Article/Communication Auteurs : Ikechukwu Maduako, Auteur ; Monica Wachowicz, Auteur Année de publication : 2019 Article en page(s) : pp 1915 - 1935 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accident de la route
[Termes IGN] analyse des risques
[Termes IGN] analyse spatio-temporelle
[Termes IGN] connexité (graphes)
[Termes IGN] graphe
[Termes IGN] relation topologique
[Termes IGN] représentation spatiale
[Termes IGN] réseau routier
[Termes IGN] système d'information géographique
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) Modelling topological relationships between places and events is challenging especially because these relationships are dynamic, and their evolutionary analysis relies on the explanatory power of representing their interactions across different temporal resolutions. In this paper, we introduce the Space-Time Varying Graph (STVG) based on the whole graph approach that combines directed and bipartite subgraphs with a time-tree for representing the complex interaction between places and events across time. We demonstrate how the proposed STVG can be exploited to identify and extract evolutionary patterns of traffic accidents using graph metrics, ad-hoc graph queries and clustering algorithms. The results reveal evolutionary patterns that uncover the places with high incidence of accidents over different time resolutions, reveal the main reasons why the traffic accidents have occurred, and disclose evolving communities of densely connected traffic accidents over time. Numéro de notice : A2019-393 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1603386 Date de publication en ligne : 17/04/2019 En ligne : https://doi.org/10.1080/13658816.2019.1603386 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93497
in International journal of geographical information science IJGIS > vol 33 n° 10 (October 2019) . - pp 1915 - 1935[article]Analysis of positional uncertainty of road networks in volunteered geographic information with a statistically defined buffer-zone method / Wen-Bin Zhang in International journal of geographical information science IJGIS, vol 33 n° 9 (September 2019)
[article]
Titre : Analysis of positional uncertainty of road networks in volunteered geographic information with a statistically defined buffer-zone method Type de document : Article/Communication Auteurs : Wen-Bin Zhang, Auteur ; Yee Leung, Auteur ; Jiang-Hong Ma, Auteur Année de publication : 2019 Article en page(s) : pp 1807 - 1828 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] base de données localisées
[Termes IGN] données localisées des bénévoles
[Termes IGN] incertitude de position
[Termes IGN] OpenStreetMap
[Termes IGN] précision de localisation
[Termes IGN] qualité des données
[Termes IGN] réseau routier
[Termes IGN] SIG participatif
[Termes IGN] zone tamponRésumé : (auteur) Volunteered geographic information (VGI) is crowdsourced information that can enrich and enhance research and applications based on geo-referenced data. However, the quality of VGI is of great concern, and positional accuracy is a fundamental basis for the VGI quality assurance. A buffer-zone method can be used for its assessment, but the buffer radius in this technique is subjectively specified; as result, different selections of the buffer radius lead to different positional accuracies. To solve this problem, a statistically defined buffer zone for the positional accuracy assessment in VGI is proposed in this study. To facilitate practical applications, we have also developed an iterative method to obtain a theoretically defined buffer zone. In addition to the positional accuracy assessment, we have derived a measure of positional quality, which comprises the assessment of positional accuracy and the level of confidence in such assessment determined with respect to a statistically defined buffer zone. To illustrate and substantiate the theoretical arguments, both numerical simulations and real-life experiments are performed using OpenStreetMap. The experimental results confirm the high significance of the proposed statistical approach to the buffer zone-based assessment of the positional uncertainty in VGI. Numéro de notice : A2019-390 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1606430 Date de publication en ligne : 29/04/2019 En ligne : https://doi.org/10.1080/13658816.2019.1606430 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93483
in International journal of geographical information science IJGIS > vol 33 n° 9 (September 2019) . - pp 1807 - 1828[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 079-2019091 RAB Revue Centre de documentation En réserve L003 Disponible 079-2019092 RAB Revue Centre de documentation En réserve L003 Disponible Detecting and mapping traffic signs from Google Street View images using deep learning and GIS / Andrew Campbell in Computers, Environment and Urban Systems, vol 77 (september 2019)
[article]
Titre : Detecting and mapping traffic signs from Google Street View images using deep learning and GIS Type de document : Article/Communication Auteurs : Andrew Campbell, Auteur ; Alan Both, Auteur ; Qian (Chayn) Sun, Auteur ; Qian (Chayn) Sun, Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] apprentissage profond
[Termes IGN] base de données routières
[Termes IGN] détection d'objet
[Termes IGN] feu de circulation
[Termes IGN] gestion de trafic
[Termes IGN] image Streetview
[Termes IGN] réseau routier
[Termes IGN] signalisation routière
[Termes IGN] système d'information géographique
[Termes IGN] trafic routier
[Termes IGN] vision par ordinateurRésumé : (auteur) Street traffic sign infrastructure remains an extremely difficult asset for local government to manage due to its diverse physical structure and geographical distribution. A spatial registrar of traffic infrastructure is currently a required component of local government councils' mandatory road management plans. Recent advancements of object detection technology in machine learning have presented an automated approach for the detection and classification of street signage captured by Google's Street View (GSV) imagery. This paper explores the possibility of using deep learning to produce an autonomous system for detecting traffic signs on GSV images to assist in traffic assets monitoring and maintenance. By leveraging Google's Street View API, this research offers an economic approach of building purposeful street sign computer vision datasets. A custom object detection model was trained to detect and classify Stop and Give Way signs from images captured at intersection approaches. Considering the output detected bounding box coordinates, photogrammetry approach was applied to calculate the approximate location of each detected sign in two-dimensional geographical space. The newly located and classified street signs can be combined with relevant spatial data for implementation into an asset management system. By combining GIS and the GSV API, the process is completely scalable to any level of street sign classification scope. The experiments conducted on the road network of study area recorded a detection accuracy of 95.63% and classification accuracy of 97.82%. Our proposed automated approach to the detection and localisation of street sign infrastructure has displayed a promising potential for its use by local government authorities. Our workflow can be used to detect other traffic signs and applied to other road sections and other cities. Of primary importance, this approach takes an entirely free and open-source approach throughout. The continuation of Google's Street View program will account for the spatiotemporal representation of street sign infrastructure for the ongoing maintenance and renewal programs of this valuable asset. Numéro de notice : A2019-412 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.compenvurbsys.2019.101350 Date de publication en ligne : 07/06/2019 En ligne : https://doi.org/10.1016/j.compenvurbsys.2019.101350 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93536
in Computers, Environment and Urban Systems > vol 77 (september 2019)[article]Performance analysis of GLONASS integration with GPS vectorised receiver in urban canyon positioning / Amir Tabatabaei in Survey review, vol 51 n° 368 (September 2019)PermalinkAccuracy assessment of speed values calculated from GNSS tracks of roads obtained from VGI / Antonio Tomás Mozas-Calvache in Survey review, vol 51 n° 367 (July 2019)PermalinkExploitation of deep learning in the automatic detection of cracks on paved roads / Won Mo Jung in Geomatica, vol 73 n° 2 (June 2019)PermalinkA hidden Markov model for matching spatial networks / Benoit Costes in Journal of Spatial Information Science, JoSIS, n° 18 (2019)PermalinkA model for phased evacuations for disasters with spatio-temporal randomness / Menghui Li in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)PermalinkAnalyse spatiotemporelle des tournées de livraison d’une entreprise de livraison à domicile / Khaled Belhassine in Revue internationale de géomatique, vol 29 n° 2 (avril - juin 2019)PermalinkMultilane roads extracted from the OpenStreetMap urban road network using random forests / Yongyang Xu in Transactions in GIS, vol 23 n° 2 (April 2019)PermalinkA topographically preserved road‐network tile model and optimal routing method for virtual globes / Quanhua Dong in Transactions in GIS, vol 23 n° 2 (April 2019)PermalinkEmbedding road networks and travel time into distance metrics for urban modelling / Henry Crosby in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)PermalinkA graph-based approach for the structural analysis of road and building layouts / Mathieu Domingo in Geo-spatial Information Science, vol 22 n° 1 (March 2019)Permalink