Descripteur
Documents disponibles dans cette catégorie (705)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
An improved MCDM combined with GIS for risk assessment of multi-hazards in Hong Kong / Hai-Min Lyu in Sustainable Cities and Society, vol 91 (April 2023)
[article]
Titre : An improved MCDM combined with GIS for risk assessment of multi-hazards in Hong Kong Type de document : Article/Communication Auteurs : Hai-Min Lyu, Auteur ; Zhen-Yu Yin, Auteur Année de publication : 2023 Article en page(s) : n° 104427 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multicritère
[Termes IGN] Hong-Kong
[Termes IGN] processus de hiérarchisation analytique floue
[Termes IGN] risque naturel
[Termes IGN] système d'information géographique
[Termes IGN] zone à risqueRésumé : (auteur) Hong Kong frequently suffers from multi-hazards such as floods, muddy-water flows and landslides induced by rainstorms. This study presents an improved multi criteria decision making (MCDM) approach with integrating the interval numbers into fuzzy analytical hierarchy process (FAHP) to assess multi-hazard risks. To illustrate the efficiency of the improved MCDM method, the AHP, interval-FAHP and analytical network process (ANP) were incorporated into a geographical information system (GIS, abbreviated as AHP-GIS, interval-FAHP-GIS, and ANP-GIS) to assess the risks of multi-hazards (e.g., floods, muddy-water flows, and landslides) in Hong Kong. The assessed multi-risks indicated that the percentages of areas with a high risk of flood, muddy-water flow, and landslide were more than 15%, 17%, and 18%, respectively. The results demonstrated that MCDM methods considered multi-criteria contributions on multi hazards. Different assessment factors contributed different importance on different multi-hazard risks. The comparison indicates that interval-FAHP-GIS perform better than AHP-GIS and ANP-GIS in capturing high-risk areas. The interval-FAHP-GIS method adopts interval fuzzy numbers instead of crisp numbers in AHP-GIS to reflect the degree of importance of assessment factors, which increases the accuracy of the assessed multi-risks. Numéro de notice : A2023-150 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2023.104427 Date de publication en ligne : 27/01/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104427 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102823
in Sustainable Cities and Society > vol 91 (April 2023) . - n° 104427[article]Susceptibility of microseismic triggering to small sinusoidal stress perturbations at the laboratory scale / Martin Colledge in Journal of geophysical research : Solid Earth, vol 128 n° 4 (April 2023)
[article]
Titre : Susceptibility of microseismic triggering to small sinusoidal stress perturbations at the laboratory scale Type de document : Article/Communication Auteurs : Martin Colledge, Auteur ; Jérôme Aubry, Auteur ; Kristel Chanard , Auteur ; François Pétrélis, Auteur ; Clara Duverger, Auteur ; Laurent Bollinger, Auteur ; Alexandre Schubnel, Auteur Année de publication : 2023 Article en page(s) : n° e2022JB025583 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] onde sismique
[Termes IGN] oscillation
[Termes IGN] risque naturel
[Termes IGN] séisme
[Termes IGN] sismicitéRésumé : (auteur) Small transient stress perturbations are prone to trigger (micro)seismicity. In the Earth's crust, these stress perturbations can be caused by various sources such as the passage of seismic waves, forcing by tides, or hydrological seasonal loads. A better understanding of the dynamic of earthquake triggering by stress perturbations is essential to improve our understanding of earthquake physics and our consideration of seismic hazard. Here, we study an experimental sandstone-gouge-filled fault system undergoing combined far field loading and periodic stress perturbations (of variable amplitude and frequency) at crustal pressure conditions. Microseismicity—in the form of acoustic emissions (AEs)—strains, and stresses, are continuously recorded in order to study the response of microseismicity as a function of loading rate, amplitude, and frequency of a periodic stress perturbation. The observed AE distributions do not follow the predictions of either a Coulomb failure model, taking into account both constant loading and oscillation-induced strain rates, or a rate and state model. A susceptibility of the system's AE response to the amplitude of the confinement pressure perturbation is estimated, which highlights a linear relation between confinement pressure amplitude and the AE response amplitude, observations which agree with recent higher frequency experimental results on dynamic triggering. The magnitude-frequency distribution of AEs is also computed. The Gutenberg-Richter b-value oscillates with stress oscillations. Our experiments may help complement our understanding of the influence of low inertia stress phenomena on the distribution of seismicity, such as observations of dynamic triggering and seismicity modulation by tides or hydrological loading. Numéro de notice : A2023-095 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1029/2022JB025583 Date de publication en ligne : 13/04/2023 En ligne : https://doi.org/10.1029/2022JB025583 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103211
in Journal of geophysical research : Solid Earth > vol 128 n° 4 (April 2023) . - n° e2022JB025583[article]Peut-on prédire les séismes ? / Laurent Polidori in Géomètre, n° 2211 (mars 2023)
[article]
Titre : Peut-on prédire les séismes ? Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2023 Article en page(s) : pp 21 - 21 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] catastrophe naturelle
[Termes IGN] déformation de la croute terrestre
[Termes IGN] Demeter (microsatellite)
[Termes IGN] observation de la Terre
[Termes IGN] risque naturel
[Termes IGN] séisme
[Termes IGN] station GNSS
[Termes IGN] tectonique des plaquesRésumé : (Auteur) Le 6 février, un séisme de magnitude 7,8 s’est produit à la frontière entre la Turquie et la Syrie, faisant près de 50000 victimes. Quelques minutes auraient suffi pour épargner presque toutes les vies, aussi s’interroge-t-on à chaque catastrophe : aurait-on pu la prédire ? Numéro de notice : A2023-066 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/03/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102713
in Géomètre > n° 2211 (mars 2023) . - pp 21 - 21[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2023031 RAB Revue Centre de documentation En réserve L003 Disponible Wavelet-like denoising of GNSS data through machine learning. Application to the time series of the Campi Flegrei volcanic area (Southern Italy) / Rolando Carbonari in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
[article]
Titre : Wavelet-like denoising of GNSS data through machine learning. Application to the time series of the Campi Flegrei volcanic area (Southern Italy) Type de document : Article/Communication Auteurs : Rolando Carbonari, Auteur ; Umberto Riccardi, Auteur ; Prospero De Martino, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2187271 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] caldeira
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GNSS
[Termes IGN] filtrage du bruit
[Termes IGN] Naples
[Termes IGN] relief volcanique
[Termes IGN] risque naturel
[Termes IGN] série temporelle
[Termes IGN] surveillance géologique
[Termes IGN] transformation en ondelettesRésumé : (auteur) The great potential of the Global Navigation Satellite System (GNSS) in monitoring ground deformation is widely recognized. As with other geophysical data, GNSS time series can be significantly noisy, hiding elusive ground deformation signals. Several denoising techniques have been proposed to improve the signal-to-noise ratio over the years. One of the most effective denoising techniques has been proved to be multi-resolution decomposition through the discrete wavelet transform. However, wavelet analysis requires long data sets to be effective, as well as long computation times, that hinder its use as a real or near real-time monitoring tool. We propose training by a Convolutional Neural Network (CNN) to perform the equivalent of wavelet analysis to overcome these limitations. Once trained, the CNN model provides answers within seconds, making it feasible as a real-time data analysis tool. Our Machine Learning algorithm is tested on daily GNSS time series collected in the Campi Flegrei caldera (Southern Italy), which is a highly volcanic risk area. Without significant gaps, the retrieved RMSE and R2 values vary in the ranges 0.65–0.98 and 0.06–0.52 cm, respectively. These results are encouraging, as they hint at the possibility of applying this methodology in more effective real-time monitoring solutions for active volcanoes. Numéro de notice : A2023-180 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1080/19475705.2023.2187271 Date de publication en ligne : 10/03/2023 En ligne : https://doi.org/10.1080/19475705.2023.2187271 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102949
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - n° 2187271[article]Modelling evacuation preparation time prior to floods: A machine learning approach / R. Sreejith in Sustainable Cities and Society, vol 87 (December 2022)
[article]
Titre : Modelling evacuation preparation time prior to floods: A machine learning approach Type de document : Article/Communication Auteurs : R. Sreejith, Auteur ; K.R. Sinimole, Auteur Année de publication : 2022 Article en page(s) : n° 104257 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] chronométrie
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de crise
[Termes IGN] inondation
[Termes IGN] Kerala (Inde ; état)
[Termes IGN] modèle de simulation
[Termes IGN] plan de prévention des risques
[Termes IGN] questionnaire
[Termes IGN] risque naturel
[Termes IGN] secours d'urgenceRésumé : (auteur) Flooding is a significant hazard responsible for substantial damage and risks to human life worldwide. Effective emergency evacuation to a safer location remains a concern even though the crisis can be predicted and warnings were given. During a calamity, most residents cannot quickly and securely flee. As it is crucial to start evacuation at the right time to have a safe evacuation, this study focuses on a machine learning-based model for predicting a household's evacuation preparation time in the incident of a flood. The study is based on the data collected from flood-affected people from Kerala, India, through a questionnaire. The study indicates that people's demographic, geographical and behavioural aspects, awareness of natural hazards and management are the critical components for improved emergency actions. Further, the article also analysed the characteristics of the respondents and successfully created clusters in which the respondents broadly belong, which will help the rescue team operationalize the evacuation process. Numéro de notice : A2022-819 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104257 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104257 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101986
in Sustainable Cities and Society > vol 87 (December 2022) . - n° 104257[article]Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India / Rabin Chakrabortty in Geocarto international, vol 37 n° 23 ([15/10/2022])PermalinkDiscontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry / Wei Wang in Computers & geosciences, vol 166 (September 2022)PermalinkUAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment / Katerina Trepekli in Natural Hazards, vol 113 n° 1 (August 2022)PermalinkHow large-scale bark beetle infestations influence the protective effects of forest stands against avalanches: A case study in the Swiss Alps / Marion E. Caduff in Forest ecology and management, vol 514 (June-15 2022)PermalinkART-RISK 3.0, a fuzzy-based platform that combine GIS and expert assessments for conservation strategies in cultural heritage / M. Moreno in Journal of Cultural Heritage, vol 55 (May - June 2022)PermalinkLandslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie City in Guizhou Province, China / Kezhen Yao in ISPRS International journal of geo-information, vol 11 n° 5 (May 2022)PermalinkDeep mass redistribution prior to the 2010 Mw 8.8 Maule (Chile) Earthquake revealed by GRACE satellite gravity / Marie Bouih in Earth and planetary science letters, vol 584 (15 April 2022)PermalinkLa bathymétrie ancienne au service de l’étude de tsunamis inexpliqués : le cas du pertuis d’Antioche (1785, 1875, 1882) / Helen Mair Rawsthorne in Norois, n° 263 (avril - juin 2022)PermalinkDetermination of building flood risk maps from LiDAR mobile mapping data / Yu Feng in Computers, Environment and Urban Systems, vol 93 (April 2022)PermalinkFlood mapping using multi-temporal Sentinel-1 SAR images: A case study—Inaouene watershed from Northeast of Morocco / Brahim Benzougagh in Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol 46 n° 2 (April 2022)Permalink