Descripteur
Documents disponibles dans cette catégorie (327)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Nonparametric upscaling of bark beetle infestations and management from plot to landscape level by combining individual-based with Markov chain models / Bruno Walter Pietzsch in European Journal of Forest Research, vol 142 n° 1 (February 2023)
[article]
Titre : Nonparametric upscaling of bark beetle infestations and management from plot to landscape level by combining individual-based with Markov chain models Type de document : Article/Communication Auteurs : Bruno Walter Pietzsch, Auteur ; Chris Wudel, Auteur ; Uta Berger, Auteur Année de publication : 2023 Article en page(s) : pp 129 - 144 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] chaîne de Markov
[Termes IGN] dépérissement
[Termes IGN] insecte nuisible
[Termes IGN] métamodèle
[Termes IGN] modèle de simulation
[Termes IGN] Picea abies
[Termes IGN] santé des forêts
[Termes IGN] Scolytinae
[Termes IGN] Suisse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Linked to climate change, drivers such as increased temperatures and decreased water availability affect forest health in complex ways by simultaneously weakening tree vitality and promoting insect pest activity. One major beneficiary of climate-induced changes is the European spruce bark beetle (Ips typographus). To improve the mechanistic understanding of climate change impacts on long-term beetle infestation risks, individual-based simulation models (IBM) such as the bark beetle dispersion model IPS-SPREADS have been proven as effective tools. However, the computational costs of IBMs limit their spatial scale of application. While these tools are best suitable to simulate bark beetle dynamics on the plot level, upscaling the process to larger areas is challenging. The larger spatial scale is, nevertheless, often required to support the selection of adequate management intervention. Here, we introduce a novel two-step approach to address this challenge: (1) we use the IPS-SPREADS model to simulate the bark beetle dispersal at a local scale by dividing the research area into 250 × 250 m grid cells; and (2) we then apply a metamodel framework to upscale the results to the landscape level. The metamodel is based on Markov chains derived from the infestation probabilities of IPS-SPREADS results and extended by considering neighbor interaction and spruce dieback of each focal cell. We validated the metamodel by comparing its predictions with infestations observed in 2017 and 2018 in the Saxon Switzerland national park, Germany, and tested sanitation felling as a measure to prevent potential further outbreaks in the region. Validation showed an improvement in predictions by introducing the model extension of beetle spreading from one cell to another. The metamodel forecasts indicated an increase in the risk of infestation for adjacent forest areas. In case of a beetle mass outbreak, sanitation felling intensities of 80 percent and above seem to mitigate further outbreak progression. Numéro de notice : A2023-139 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-022-01512-1 Date de publication en ligne : 29/10/2022 En ligne : https://doi.org/10.1007/s10342-022-01512-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102694
in European Journal of Forest Research > vol 142 n° 1 (February 2023) . - pp 129 - 144[article]Decadal surface changes and displacements in Switzerland / Valentin Tertius Bickel in Journal of Geovisualization and Spatial Analysis, vol 6 n° 2 (December 2022)
[article]
Titre : Decadal surface changes and displacements in Switzerland Type de document : Article/Communication Auteurs : Valentin Tertius Bickel, Auteur ; Andrea Manconi, Auteur Année de publication : 2022 Article en page(s) : n° 24 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] corrélation d'images
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données multitemporelles
[Termes IGN] effondrement de terrain
[Termes IGN] géomorphologie locale
[Termes IGN] glacier
[Termes IGN] Liechtenstein
[Termes IGN] modèle numérique de terrain
[Termes IGN] stéréophotogrammétrie
[Termes IGN] SuisseRésumé : (auteur) Multi-temporal, high-resolution, and homogeneous geospatial datasets acquired by space- and/or airborne sensors provide unprecedented opportunities for the characterization and monitoring of surface changes on very large spatial scales. Here, we demonstrate how an off-the-shelf, open-source image correlation algorithm can be combined with SwissALTI3D LiDAR-derived elevation data from different tracking periods to create country-scale surface displacement and vertical change maps of Switzerland, including Liechtenstein, with minimal computational effort. The results show that glacier displacement and ablation make up the most significant fraction of the detected surface changes in the last two decades. In addition, we identify numerous landslides and other geomorphic features, as well as manmade changes such as construction sites and landfills. All produced maps and data products are available online, free of charge. Numéro de notice : A2022-832 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s41651-022-00119-9 Date de publication en ligne : 01/08/2022 En ligne : https://doi.org/10.1007/s41651-022-00119-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102019
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 2 (December 2022) . - n° 24[article]Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? / Arthur Sanguet in Global ecology and conservation, vol 39 (November 2022)
[article]
Titre : Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? Type de document : Article/Communication Auteurs : Arthur Sanguet, Auteur ; Nicolas Wyler, Auteur ; Blaise Petitpierre, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° e02286 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte d'occupation du sol
[Termes IGN] changement climatique
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage de données
[Termes IGN] habitat (nature)
[Termes IGN] modèle de simulation
[Termes IGN] montagne
[Termes IGN] pédologie locale
[Termes IGN] Suisse
[Termes IGN] télédétection
[Termes IGN] topographie locale
[Termes IGN] zone humide
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Species Distribution Models (SDM) represent a powerful tool to predict species’ habitat suitability on a landscape and fill the gap between truncated observation data and all possible locations. SDMs have been widely used in theoretical studies of species niches as well as in conservation applications. Here, we evaluated the impacts of predictors’ type on models’ performances and spatial predictions using 72 plant species belonging to six ecological groups at a regional scale in the area of Geneva (Switzerland). Twelve models were created using various combinations of high-resolution (25 m) explanatory variables including topography, pedology, climate, habitats and remote sensing data. Models integrating a combination of habitats and topopedo-climatic predictors had significantly higher performances, while remote sensing predictors showed low performances. Our results suggest that the number and the level of details of habitat predictors (broad or very precise) do not fundamentally affect prediction maps. However, selecting too few, overly simplified or exceedingly complex habitat predictors tend to lower models’ performances. The use of eight habitat categories complemented with eight topopedo-climatic predictors produced models with the highest performances. Ecological groups of species responded differently to models and while alpine and ruderal species have greater average performances due to a high affinity with topopedo-climatic predictors, wetlands’ species were less performant on average. These results underline the necessity of developing or having access to habitats distribution data especially in a conservation context. Numéro de notice : A2022-815 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article DOI : 10.1016/j.gecco.2022.e02286 Date de publication en ligne : 13/09/2022 En ligne : https://doi.org/10.1016/j.gecco.2022.e02286 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101977
in Global ecology and conservation > vol 39 (November 2022) . - n° e02286[article]Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning / Thiên-Anh Nguyen in Remote sensing of environment, vol 281 (November 2022)
[article]
Titre : Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning Type de document : Article/Communication Auteurs : Thiên-Anh Nguyen, Auteur ; Benjamin Kellenberger, Auteur ; Devis Tuia, Auteur Année de publication : 2022 Article en page(s) : n° 113217 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alpes
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] carte forestière
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] écotone
[Termes IGN] hauteur des arbres
[Termes IGN] image à très haute résolution
[Termes IGN] image aérienne
[Termes IGN] image RVB
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] SuisseRésumé : (auteur) Forest maps are essential to understand forest dynamics. Due to the increasing availability of remote sensing data and machine learning models like convolutional neural networks, forest maps can these days be created on large scales with high accuracy. Common methods usually predict a map from remote sensing images without deliberately considering intermediate semantic concepts that are relevant to the final map. This makes the mapping process difficult to interpret, especially when using opaque deep learning models. Moreover, such procedure is entirely agnostic to the definitions of the mapping targets (e.g., forest types depending on variables such as tree height and tree density). Common models can at best learn these rules implicitly from data, which greatly hinders trust in the produced maps. In this work, we aim at building an explainable deep learning model for forest mapping that leverages prior knowledge about forest definitions to provide explanations to its decisions. We propose a model that explicitly quantifies intermediate variables like tree height and tree canopy density involved in the forest definitions, corresponding to those used to create the forest maps for training the model in the first place, and combines them accordingly. We apply our model to mapping forest types using very high resolution aerial imagery and lay particular focus on the treeline ecotone at high altitudes, where forest boundaries are complex and highly dependent on the chosen forest definition. Results show that our rule-informed model is able to quantify intermediate key variables and predict forest maps that reflect forest definitions. Through its interpretable design, it is further able to reveal implicit patterns in the manually-annotated forest labels, which facilitates the analysis of the produced maps and their comparison with other datasets. Numéro de notice : A2022-794 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2022.113217 Date de publication en ligne : 01/09/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101928
in Remote sensing of environment > vol 281 (November 2022) . - n° 113217[article]Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest / Daniel Kükenbrink in International journal of applied Earth observation and geoinformation, vol 113 (September 2022)
[article]
Titre : Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest Type de document : Article/Communication Auteurs : Daniel Kükenbrink, Auteur ; Mauro Marty, Auteur ; Ruedi Bösch, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102999 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] caméra à bas coût
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tempérée
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lidar mobile
[Termes IGN] lidar topographique
[Termes IGN] photogrammétrie terrestre
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] structure-from-motion
[Termes IGN] Zurich (Suisse)Résumé : (auteur) National forest inventories (NFI) are important for the assessment of the state and development of forests. Traditional NFIs often rely on statistical sampling approaches as well as expert assessment which may suffer from observer bias and may lack robustness for time series analysis. Over the course of the last decade, close-range remote sensing techniques such as terrestrial and mobile laser scanning became ever more established for the assessment of three-dimensional (3D) forest structure. With the ongoing trend to make the systems smaller, easier to use and more efficient, the pathway is being opened for an operational inclusion of such devices within the framework of an NFI to support the traditional field assessment. Close-range remote sensing could potentially speed up field inventory work as well as increase the area in which certain parameters are assessed. Benchmarks are needed to evaluate the performance of different close-range remote sensing devices and approaches, both in terms of efficiency as well as accuracy. In this study we evaluate the performance of two terrestrial (TLS), one handheld mobile (PLS) and two drone based (UAVLS) laser scanning systems to detect trees and extract the diameter at breast height (DBH) in three plots with a steep gradient in tree and understorey vegetation density. As a novelty, we also tested the acquisition of 3D point-clouds using a low-cost action camera (GoPro) in conjunction with the Structure from Motion (SfM) technique and compared its performance with those of the more costly LiDAR devices. Among the many parameters evaluated in traditional NFIs, the focus of the performance evaluation of this study is set on the automatic tree detection and DBH extraction. The results showed that TLS delivers the highest tree detection rate (TDR) of up to 94.6% under leaf-off and up to 82% under leaf-on conditions and a relative RMSE (rRMSE) for the DBH extraction between 2.5 and 9%, depending on the undergrowth complexity. The tested PLS system (leaf-on) achieved a TDR of up to 80% with an rRMSE between 3.7 and 5.8%. The tested UAVLS systems showed lowest TDR of less than 77% under leaf-off and less than 37% under leaf-on conditions. The novel GoPro approach achieved a TDR of up to 53% under leaf-on conditions. The reduced TDR can be explained by the reduced area coverage due to the chosen circular acquisition path taken with the GoPro approach. The DBH extraction performance on the other hand is comparable to those of the LiDAR devices with an rRMSE between 2 and 9%. Further benchmarks are needed in order to fully assess the applicability of these systems in the framework of an NFI. Especially the robustness under varying forest conditions (seasonality) and over a broader range of forest types and canopy structure has to be evaluated. Numéro de notice : A2022-787 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102999 Date de publication en ligne : 05/09/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102999 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101893
in International journal of applied Earth observation and geoinformation > vol 113 (September 2022) . - n° 102999[article]How large-scale bark beetle infestations influence the protective effects of forest stands against avalanches: A case study in the Swiss Alps / Marion E. Caduff in Forest ecology and management, vol 514 (June-15 2022)PermalinkJonctions entre les réseaux de nivellement français et suisse effectués en 2021 / Thierry Poncet (2022)PermalinkMise en place d’outils collaboratifs pour une maquette BIM orientée 7D en vue de l’exploitation et de la maintenance des infrastructures de transport public / Eva Ivanova (2022)PermalinkImpact of beam diameter and scanning approach on point cloud quality of terrestrial laser scanning in forests / Meinrad Abegg in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)PermalinkUncertainties in measurements of leaf optical properties are small compared to the biological variation within and between individuals of European beech / Fanny Petibon in Remote sensing of environment, vol 264 (October 2021)PermalinkStochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network / Jussi Leinonen in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)PermalinkSpatial patterns of living and dead small trees in subalpine Norway spruce forest reserves in Switzerland / Eva Bianchi in Forest ecology and management, vol 494 (August-15 2021)PermalinkCalibration of the process-based model 3-PG for major central European tree species / David I. Forrester in European Journal of Forest Research, vol 140 n° 4 (August 2021)PermalinkSelf-thinning tree mortality models that account for vertical stand structure, species mixing and climate / David I. Forrester in Forest ecology and management, Vol 487 ([01/05/2021])PermalinkLong-term tree species population dynamics in Swiss forest reserves influenced by forest structure and climate / Amanda S. Mathys in Forest ecology and management, vol 481 (February 2021)Permalink