Descripteur
Documents disponibles dans cette catégorie (102)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT / Shengli Tao in Earth System Science Data, vol 15 n° 4 (2023)
[article]
Titre : A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT Type de document : Article/Communication Auteurs : Shengli Tao, Auteur ; Zurui Ao, Auteur ; Jean-Pierre Wigneron, Auteur ; Sassan Saatchi, Auteur ; Philippe Ciais, Auteur ; Jérôme Chave, Auteur ; Thuy Le Toan, Auteur ; Pierre-Louis Frison , Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1577 - 1596 Note générale : bibliographie
Data description paperLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] bande Ku
[Termes IGN] fusion de données
[Termes IGN] image radar moirée
[Termes IGN] régression
[Termes IGN] série temporelleRésumé : (auteur) Satellite radar backscatter contains unique information on land surface moisture, vegetation features, and surface roughness and has thus been used in a range of Earth science disciplines. However, there is no single global radar data set that has a relatively long wavelength and a decades-long time span. We here provide the first long-term (since 1992), high-resolution (∼8.9 km instead of the commonly used ∼25 km resolution) monthly satellite radar backscatter data set over global land areas, called the long-term, high-resolution scatterometer (LHScat) data set, by fusing signals from the European Remote Sensing satellite (ERS; 1992–2001; C-band; 5.3 GHz), Quick Scatterometer (QSCAT, 1999–2009; Ku-band; 13.4 GHz), and the Advanced SCATterometer (ASCAT; since 2007; C-band; 5.255 GHz). The 6-year data gap between C-band ERS and ASCAT was filled by modelling a substitute C-band signal during 1999–2009 from Ku-band QSCAT signals and climatic information. To this end, we first rescaled the signals from different sensors, pixel by pixel. We then corrected the monthly signal differences between the C-band and the scaled Ku-band signals by modelling the signal differences from climatic variables (i.e. monthly precipitation, skin temperature, and snow depth) using decision tree regression. The quality of the merged radar signal was assessed by computing the Pearson r, root mean square error (RMSE), and relative RMSE (rRMSE) between the C-band and the corrected Ku-band signals in the overlapping years (1999–2001 and 2007–2009). We obtained high Pearson r values and low RMSE values at both the regional (r≥0.92, RMSE ≤ 0.11 dB, and rRMSE ≤ 0.38) and pixel levels (median r across pixels ≥ 0.64, median RMSE ≤ 0.34 dB, and median rRMSE ≤ 0.88), suggesting high accuracy for the data-merging procedure. The merged radar signals were then validated against the European Space Agency (ESA) ERS-2 data, which provide observations for a subset of global pixels until 2011, even after the failure of on-board gyroscopes in 2001. We found highly concordant monthly dynamics between the merged radar signals and the ESA ERS-2 signals, with regional Pearson r values ranging from 0.79 to 0.98. These results showed that our merged radar data have a consistent C-band signal dynamic. The LHScat data set (https://doi.org/10.6084/m9.figshare.20407857; Tao et al., 2023) is expected to advance our understanding of the long-term changes in, e.g., global vegetation and soil moisture with a high spatial resolution. The data set will be updated on a regular basis to include the latest images acquired by ASCAT and to include even higher spatial and temporal resolutions. Numéro de notice : A2023-097 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/essd-15-1577-2023 Date de publication en ligne : 12/04/2023 En ligne : https://doi.org/10.5194/essd-15-1577-2023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103215
in Earth System Science Data > vol 15 n° 4 (2023) . - pp 1577 - 1596[article]Fusion of SAR and multi-spectral time series for determination of water table depth and lake area in peatlands / Katrin Krzepek in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, vol 90 n° 6 (December 2022)
[article]
Titre : Fusion of SAR and multi-spectral time series for determination of water table depth and lake area in peatlands Type de document : Article/Communication Auteurs : Katrin Krzepek, Auteur ; Jacob Schmidt, Auteur ; Dorota Iwaszczuk, Auteur Année de publication : 2022 Article en page(s) : pp 561 - 575 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage non-dirigé
[Termes IGN] aquifère
[Termes IGN] Bade-Wurtemberg (Allemagne)
[Termes IGN] bande C
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Normalized Difference Water Index
[Termes IGN] puits de carbone
[Termes IGN] seuillage d'image
[Termes IGN] théorie de Dempster-Shafer
[Termes IGN] tourbièreRésumé : (auteur) Peatlands as natural carbon sinks have a major impact on the climate balance and should therefore be monitored and protected. The hydrology of the peatland serves as an indicator of the carbon storage capacity. Hence, we investigate the question how suitable different remote sensing data are for monitoring the size of open water surface and the water table depth (WTD) of a peatland ecosystem. Furthermore, we examine the potential of combining remote sensing data for this purpose. We use C-band synthetic aperture radar (SAR) data from Sentinel-1 and multi-spectral data from Sentinel-2. The radar backscatter σ0, the normalized difference water index (NDWI) and the modified normalized difference water index (MNDWI) are calculated and used for consideration of the WTD and the lake size. For the measurement of the lake size, we implement and investigate the methods: random forest, adaptive thresholding and an analysis according to the Dempster–Shafer theory. Correlations between WTD and the remote sensing data σ0 as well as NDWI are investigated. When looking at the individual data sets the results of our case study show that the VH polarized σ0 data produces the clearest delineation of the peatland lake. However the adaptive thresholding of the weighted fusion image of σ0-VH, σ0-VV and MNDWI, and the random forest algorithm with all three data sets as input proves to be the most suitable for determining the lake area. The correlation coefficients between σ0/NDWI and WTD vary greatly and lie in ranges of low to moderate correlation. Numéro de notice : A2022-942 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s41064-022-00216-w Date de publication en ligne : 06/09/2022 En ligne : https://doi.org/10.1007/s41064-022-00216-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102876
in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science > vol 90 n° 6 (December 2022) . - pp 561 - 575[article]Multi-modal temporal attention models for crop mapping from satellite time series / Vivien Sainte Fare Garnot in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
[article]
Titre : Multi-modal temporal attention models for crop mapping from satellite time series Type de document : Article/Communication Auteurs : Vivien Sainte Fare Garnot , Auteur ; Loïc Landrieu , Auteur ; Nesrine Chehata , Auteur Année de publication : 2022 Projets : 3-projet - voir note / Article en page(s) : pp 294 - 305 Note générale : bibliographie
This work was partly supported by ASP, the French Payment Agency.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] bande C
[Termes IGN] carte agricole
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] parcelle agricole
[Termes IGN] Pastis
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) Optical and radar satellite time series are synergetic: optical images contain rich spectral information, while C-band radar captures useful geometrical information and is immune to cloud cover. Motivated by the recent success of temporal attention-based methods across multiple crop mapping tasks, we propose to investigate how these models can be adapted to operate on several modalities. We implement and evaluate multiple fusion schemes, including a novel approach and simple adjustments to the training procedure, significantly improving performance and efficiency with little added complexity. We show that most fusion schemes have advantages and drawbacks, making them relevant for specific settings. We then evaluate the benefit of multimodality across several tasks: parcel classification, pixel-based segmentation, and panoptic parcel segmentation. We show that by leveraging both optical and radar time series, multimodal temporal attention-based models can outmatch single-modality models in terms of performance and resilience to cloud cover. To conduct these experiments, we augment the PASTIS dataset (Garnot and Landrieu, 2021a) with spatially aligned radar image time series. The resulting dataset, PASTIS-R, constitutes the first large-scale, multimodal, and open-access satellite time series dataset with semantic and instance annotations. (Dataset available at: https://zenodo.org/record/5735646) Numéro de notice : A2022-157 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers ArXiv Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.012 Date de publication en ligne : 24/03/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100365
in ISPRS Journal of photogrammetry and remote sensing > vol 187 (May 2022) . - pp 294 - 305[article]Voir aussiExemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022051 SL Revue Centre de documentation Revues en salle Disponible 081-2022053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Examining the integration of Landsat operational land imager with Sentinel-1 and vegetation indices in mapping southern yellow pines (Loblolly, Shortleaf, and Virginia pines) / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 1 (January 2022)
[article]
Titre : Examining the integration of Landsat operational land imager with Sentinel-1 and vegetation indices in mapping southern yellow pines (Loblolly, Shortleaf, and Virginia pines) Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Eze O. Amadi, Auteur Année de publication : 2022 Article en page(s) : pp 29 - 38 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] bande C
[Termes IGN] canopée
[Termes IGN] carte de la végétation
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] intégration de données
[Termes IGN] inventaire forestier local
[Termes IGN] Pinus (genre)
[Termes IGN] Pinus ponderosa
[Termes IGN] précision de la classification
[Termes IGN] Soil Adjusted Vegetation IndexRésumé : (Auteur) The mapping of southern yellow pines (loblolly, shortleaf, and Virginia pines) is important to supporting forest inventory and the management of forest resources. The overall aim of this study was to examine the integration of Landsat Operational Land Imager (OLI ) optical data with Sentinel-1 microwave C-band satellite data and vegetation indices in mapping the canopy cover of southern yellow pines. Specifically, this study assessed the overall mapping accuracies of the canopy cover classification of southern yellow pines derived using four data-integration scenarios: Landsat OLI alone; Landsat OLI and Sentinel-1; Landsat OLI with vegetation indices derived from satellite data—normalized difference vegetation index, soil-adjusted vegetation index, modified soil-adjusted vegetation index, transformed soil-adjusted vegetation index, and infrared percentage vegetation index; and 4) Landsat OLI with Sentinel-1 and vegetation indices. The results showed that the integration of Landsat OLI reflectance bands with Sentinel-1 backscattering coefficients and vegetation indices yielded the best overall classification accuracy, about 77%, and standalone Landsat OLI the weakest accuracy, approximately 67%. The findings in this study demonstrate that the addition of backscattering coefficients from Sentinel-1 and vegetation indices positively contributed to the mapping of southern yellow pines. Numéro de notice : A2022-062 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00024R2 Date de publication en ligne : 01/01/2022 En ligne : https://doi.org/10.14358/PERS.21-00024R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99706
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 1 (January 2022) . - pp 29 - 38[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022011 SL Revue Centre de documentation Revues en salle Disponible In situ C-band data for wheat physiological functioning monitoring in the South Mediterranean region / Nadia Ouaadi (2022)
Titre : In situ C-band data for wheat physiological functioning monitoring in the South Mediterranean region Type de document : Article/Communication Auteurs : Nadia Ouaadi, Auteur ; Ludovic Villard, Auteur ; Saïd Khabba, Auteur ; Pierre-Louis Frison , Auteur ; Jamal Ezzahar, Auteur ; Mohamed Kasbani, Auteur ; Adnane Chakir , Auteur ; Pascal Fanise, Auteur ; Valérie Le Dantec, Auteur ; Mehrez Zribi, Auteur ; Salah Er-Raki, Auteur ; Lionel Jarlan, Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : IGARSS 2022, IEEE International Geoscience And Remote Sensing Symposium 17/07/2022 22/07/2022 Kuala Lumpur Malaysie Proceedings IEEE Importance : pp 4951 - 4954 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] blé (céréale)
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] cohérence photométrique
[Termes IGN] variation diurneRésumé : (auteur) Irrigated agriculture is the largest consumer of freshwater in the world, particularly in the South Mediterranean region that is already suffering from water shortages. Monitoring the water stress status of plants can contribute to an optimal use of irrigation. C-band radar data have shown great potential for monitoring soil and vegetation hydric conditions. While a diurnal cycle up to 1 dB has been observed over tropical forests, the behavior of annual crops is yet to be investigated. In this context, an experiment composed of a radar setup with 6 C-band antennas was installed in Morocco over a wheat field. 15 minutes full polarization acquisitions of the backscattering coefficient and the interferometric coherence are analyzed in relation with the physiological functioning of wheat. In this paper, the first results from the analysis of data collected during the 2020 growing season are presented. The results reveal the existence of a diurnal cycle of the interferometric coherence and the backscattering coefficient (up to 0.45 and 1.5 dB, respectively) with amplitudes increase in relation with vegetation development. Numéro de notice : C2022-041 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS46834.2022.9884289 Date de publication en ligne : 28/09/2022 En ligne : https://doi.org/10.1109/IGARSS46834.2022.9884289 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101769 Investigation of the landslides in Beylikdüzü-Esenyurt districts of Istanbul from InSAR and GNSS observations / Caglar Bayik in Natural Hazards, vol 109 n° 1 (October 2021)PermalinkSentinel-1 sensitivity to soil moisture at high incidence angle and the impact on retrieval over seasonal crops / Davide Palmisano in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)PermalinkEstimation of surface deformation due to Pasni earthquake using RADAR interferometry / Muhammad Ali in Geocarto international, vol 36 n° 14 ([01/08/2021])PermalinkAboveground biomass estimates of tropical mangrove forest using Sentinel-1 SAR coherence data : The superiority of deep learning over a semi-empirical model / S.M. Ghosh in Computers & geosciences, vol 150 (May 2021)PermalinkA soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar / Shoba Periasamy in Geocarto international, vol 36 n° 5 ([15/03/2021])PermalinkCluster-based empirical tropospheric corrections applied to InSAR time series analysis / Kyle Dennis Murray in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)PermalinkSaline-soil deformation extraction based on an improved time-series InSAR approach / Wei Xiang in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)PermalinkDeep learning for wildfire progression monitoring using SAR and optical satellite image time series / Puzhao Zhang (2021)PermalinkDiurnal cycles of C-band temporal coherence and backscattering coefficient over an olive orchard in a semi-arid area: Comparison of in situ and Sentinel-1 radar observations / Adnane Chakir (2021)PermalinkDiurnal cycles of C-band temporal coherence and backscattering coefficient over a wheat field in a semi-arid area / Nadia Ouaadi (2021)Permalink