Descripteur
Documents disponibles dans cette catégorie (72)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data / Linhua Ma in Science of the total environment, vol 859 n° 1 (February 2023)
[article]
Titre : A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data Type de document : Article/Communication Auteurs : Linhua Ma, Auteur ; Yuanlai Cui, Auteur ; Bo Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 159917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] Corée
[Termes IGN] données multisources
[Termes IGN] Etats-Unis
[Termes IGN] humidité du sol
[Termes IGN] image à haute résolution
[Termes IGN] image infrarouge
[Termes IGN] Italie
[Termes IGN] méthane
[Termes IGN] modélisation
[Termes IGN] réflectance du sol
[Termes IGN] rizière
[Termes IGN] système d'information géographique
[Termes IGN] variation saisonnièreRésumé : (auteur) Quantification of regional methane (CH4) gas emission in the paddy fields is critical under climate warming. Mechanism models generally require numerous parameters while empirical models are too coarse. Based on the mechanism and structure of the widely used model CH4MOD, a GIS-based Regional CH4 Emission Calculation (GRMC) method was put forward by introducing multiple sources of remote sensing images, including MOD09A1, MOD11A2, MOD15A2H as well as local water management standards. The stress of soil moisture condition (f(water)) on CH4 emissions was quantified by calculating the redox potential (Eh) from days after flooding or falling dry. The f(water)-t curve was calculated under different exogenous organic matter addition. Combining the f(water)-t curve with local water management standards, the seasonal variation of f(water) was obtained. It was proven that f(water) was effective in reflecting the regulation role of soil moisture condition. The GRMC was tested at four Eddy Covariance (EC) sites: Nanchang (NC) in China, Twitchell (TWT) in the USA, Castellaro (CAS) in Italy and Cheorwon (CRK) in Korea and has been proven to well track the seasonal dynamics of CH4 emissions with R2 ranges of 0.738–0.848, RMSE ranges of 31.94–149.22 mg C/m2d and MBE ranges of −66.42- -14.79 mg C/m2d. The parameters obtained in Nanchang (NC) site in China were then applied to the Ganfu Plain Irrigation System (GFPIS), a typical rice planting area of China, to analyse the spatial-temporal variations of CH4 emissions. The total CH4 emissions of late rice in the GFPIS from 2001 to 2013 was in the range of 14.47–20.48 (103 t CH4-C). Ts caused spatial variation of CH4 production capacity, resulting in the spatial variability of CH4 emissions. Overall, the GRMC is effective in obtaining CH4 emissions from rice fields on a regional scale. Numéro de notice : A2023-015 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.scitotenv.2022.159917 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.159917 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102133
in Science of the total environment > vol 859 n° 1 (February 2023) . - n° 159917[article]Instance segmentation of standing dead trees in dense forest from aerial imagery using deep learning / Aboubakar Sani-Mohammed in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)
[article]
Titre : Instance segmentation of standing dead trees in dense forest from aerial imagery using deep learning Type de document : Article/Communication Auteurs : Aboubakar Sani-Mohammed, Auteur ; Wei Yao, Auteur ; Marco Heurich, Auteur Année de publication : 2022 Article en page(s) : n° 100024 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre mort
[Termes IGN] Bavière (Allemagne)
[Termes IGN] bois sur pied
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] gestion forestière durable
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] image infrarouge couleur
[Termes IGN] peuplement mélangé
[Termes IGN] puits de carbone
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Mapping standing dead trees, especially, in natural forests is very important for evaluation of the forest's health status, and its capability for storing Carbon, and the conservation of biodiversity. Apparently, natural forests have larger areas which renders the classical field surveying method very challenging, time-consuming, labor-intensive, and unsustainable. Thus, for effective forest management, there is the need for an automated approach that would be cost-effective. With the advent of Machine Learning, Deep Learning has proven to successfully achieve excellent results. This study presents an adjusted Mask R-CNN Deep Learning approach for detecting and segmenting standing dead trees in a mixed dense forest from CIR aerial imagery using a limited (195 images) training dataset. First, transfer learning is considered coupled with the image augmentation technique to leverage the limitation of training datasets. Then, we strategically selected hyperparameters to suit appropriately our model's architecture that fits well with our type of data (dead trees in images). Finally, to assess the generalization capability of our model's performance, a test dataset that was not confronted to the deep neural network was used for comprehensive evaluation. Our model recorded promising results reaching a mean average precision, average recall, and average F1-Score of 0.85, 0.88, and 0.87 respectively, despite our relatively low resolution (20 cm) dataset. Consequently, our model could be used for automation in standing dead tree detection and segmentation for enhanced forest management. This is equally significant for biodiversity conservation, and forest Carbon storage estimation. Numéro de notice : A2022-871 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100024 Date de publication en ligne : 10/11/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100024 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102165
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 6 (December 2022) . - n° 100024[article]Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)
[article]
Titre : Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data Type de document : Article/Communication Auteurs : Michele Dalponte, Auteur ; Alvar J. I. Kallio, Auteur ; Hans Ole Ørka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1892 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bois sur pied
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dépérissement
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] image hyperspectrale
[Termes IGN] image infrarouge
[Termes IGN] Norvège
[Termes IGN] Perceptron multicouche
[Termes IGN] Picea abies
[Termes IGN] régression linéaire
[Termes IGN] régression logistique
[Termes IGN] santé des forêts
[Termes IGN] semis de pointsRésumé : (auteur) Wood decay caused by pathogenic fungi in Norway spruce forests causes severe economic losses in the forestry sector, and currently no efficient methods exist to detect infected trees. The detection of wood decay could potentially lead to improvements in forest management and could help in reducing economic losses. In this study, airborne hyperspectral data were used to detect the presence of wood decay in the trees in two forest areas located in Etnedal (dataset I) and Gran (dataset II) municipalities, in southern Norway. The hyperspectral data used consisted of images acquired by two sensors operating in the VNIR and SWIR parts of the spectrum. Corresponding ground reference data were collected in Etnedal using a cut-to-length harvester while in Gran, field measurements were collected manually. Airborne laser scanning (ALS) data were used to detect the individual tree crowns (ITCs) in both sites. Different approaches to deal with pixels inside each ITC were considered: in particular, pixels were either aggregated to a unique value per ITC (i.e., mean, weighted mean, median, centermost pixel) or analyzed in an unaggregated way. Multiple classification methods were explored to predict rot presence: logistic regression, feed forward neural networks, and convolutional neural networks. The results showed that wood decay could be detected, even if with accuracy varying among the two datasets. The best results on the Etnedal dataset were obtained using a convolution neural network with the first five components of a principal component analysis as input (OA = 65.5%), while on the Gran dataset, the best result was obtained using LASSO with logistic regression and data aggregated using the weighted mean (OA = 61.4%). In general, the differences among aggregated and unaggregated data were small. Numéro de notice : A2022-352 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.3390/rs14081892 Date de publication en ligne : 14/04/2022 En ligne : https://doi.org/10.3390/rs14081892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100541
in Remote sensing > vol 14 n° 8 (April-2 2022) . - n° 1892[article]Characteristics of taiga and tundra snowpack in development and validation of remote sensing of snow / Henna-Reetta Hannula (2022)
Titre : Characteristics of taiga and tundra snowpack in development and validation of remote sensing of snow Type de document : Thèse/HDR Auteurs : Henna-Reetta Hannula, Auteur Editeur : Helsinki [Finland] : University of Helsinki Année de publication : 2022 Importance : 79 p. Format : 21 x 30 cm ISBN/ISSN/EAN : 978-952-336-153-9 Note générale : Bibliographie
Academic dissertation, Faculty of Science, University of HelsinkiLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] carte thématique
[Termes IGN] changement climatique
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] distribution spatiale
[Termes IGN] données spatiotemporelles
[Termes IGN] échantillonnage de données
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] image infrarouge
[Termes IGN] manteau neigeux
[Termes IGN] problème inverse
[Termes IGN] réflectance spectrale
[Termes IGN] taïga
[Termes IGN] toundraRésumé : (auteur) Remote sensing of snow is a method to measure snow cover characteristics without direct physical contact with the target from airborne or space-borne platforms. Reliable estimates of snow cover extent and snow properties are vital for several applications including climate change research and weather and hydrological forecasting. Optical remote sensing methods detect the extent of snow cover based on its high reflectivity compared to other natural surfaces. A universal challenge for snow cover mapping is the high spatiotemporal variability of snow properties and heterogeneous landscapes such as the boreal forest biome. The optical satellite sensor’s footprint may extend from tens of meters to a kilometer; the signal measured by the sensor can simultaneously emerge from several target categories within individual satellite pixels. By use of spectral unmixing or inverse model-based methods, the fractional snow cover (FSC) within the satellite image pixel can be resolved from the recorded electromagnetic signal. However, these algorithms require knowledge of the spectral reflectance properties of the targets present within the satellite scene and the accuracy of snow cover maps is dependent on the feasibility of these spectral model parameters. On the other hand, abrupt changes in land cover types with large differences in their snow properties may be located within a single satellite image pixel and complicate the interpretation of the observations. Ground-based in-situ observations can be used to validate the snow parameters derived by indirect methods, but these data are affected by the chosen sampling. This doctoral thesis analyses laboratory-based spectral reflectance information on several boreal snow types for the purpose of the more accurate reflectance representation of snow in mapping method used for the detection of fractional snow cover. Multi-scale reflectance observations representing boreal spectral endmembers typically used in optical mapping of snow cover, are exploited in the thesis. In addition, to support the interpretation of remote sensing observations in boreal and tundra environments, extensive in-situ dataset of snow depth, snow water equivalent and snow density are exploited to characterize the snow variability and to assess the uncertainty and representativeness of these point-wise snow measurements applied for the validation of remote sensing observations. The overall goal is to advance knowledge about the spectral endmembers present in boreal landscape to improve the accuracy of the FSC estimates derived from the remote sensing observations and support better interpretation and validation of remote sensing observations over these heterogeneous landscapes. The main outcome from the work is that laboratory-controlled experiments that exclude disturbing factors present in field circumstances may provide more accurate representation of wet (melting) snow endmember reflectance for the FSC mapping method. The behavior of snow band reflectance is found to be insensitive to width and location differences between visible satellite sensor bands utilized in optical snow cover mapping which facilitates the use of various sensors for the construction of historical data records. The results also reveal the high deviation of snow reflectance due to heterogeneity in snow macro- and microstructural properties. The quantitative statistics of bulk snow properties show that areal averages derived from in-situ measurements and used to validate remote sensing observations are dependent on the measurement spacing and sample size especially over land covers with high absolute snow depth variability, such as barren lands in tundra. Applying similar sampling protocol (sample spacing and sample size) over boreal and tundra land cover types that represent very different snow characteristics will yield to non-equal representativeness of the areal mean values. The extensive datasets collected for this work demonstrate that observations measured at various scales can provide different view angle to the same challenge but at the same time any dataset individually cannot provide a full understanding of the target complexity. This work and the collected datasets directly facilitate further investigation of uncertainty in fractional snow cover maps retrieved by optical remote sensing and the interpretation of satellite observations in boreal and tundra landscapes. Note de contenu : 1. Introduction
2. Snow and its properties
3. Multispectral optical remote sensing of snow
4. Study site, datasets and methods
5. Results and discussion
6. Conclusions and future workNuméro de notice : 24060 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD Thesis : Sciences : University of Helsinki : 2022 DOI : 10.35614/isbn.9789523361522 En ligne : https://doi.org/10.35614/isbn.9789523361522 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101997 Mapping burned areas and land-uses in Kangaroo Island using an object-based image classification framework and Landsat 8 Imagery from Google Earth Engine / Jiyu Liu in Geomatics, Natural Hazards and Risk, vol 13 (2022)
[article]
Titre : Mapping burned areas and land-uses in Kangaroo Island using an object-based image classification framework and Landsat 8 Imagery from Google Earth Engine Type de document : Article/Communication Auteurs : Jiyu Liu, Auteur ; David Freudenberger, Auteur ; Lim Samsung, Auteur Année de publication : 2022 Article en page(s) : pp 1867 - 1897 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse spectrale
[Termes IGN] approche hiérarchique
[Termes IGN] Australie
[Termes IGN] carte thématique
[Termes IGN] écosystème forestier
[Termes IGN] Google Earth Engine
[Termes IGN] image infrarouge
[Termes IGN] image Landsat-8
[Termes IGN] incendie
[Termes IGN] Indien (océan)
[Termes IGN] segmentation d'image
[Termes IGN] utilisation du sol
[Termes IGN] zone sinistréeRésumé : (auteur) In Australia, fire has become part of the natural ecosystem. Severe fires have devastated Australia's unique forest ecosystems due to the global climate change. In this study, we integrated a multi-resolution segmentation method and a hierarchical classification framework based on expert-based knowledge to classify the burned areas and land-uses in Kangaroo Island, South Australia. Using an object-based image classification framework that combines colour and shape features from input layers, we demonstrated that the objects segmented from the multi-source data lead to a higher accuracy in classification with an overall accuracy of 90.2% and a kappa coefficient of 85.2%. On the other hand, the single source data from post-fire Landsat-8 imagery showed an overall accuracy of 87.4% which is also statistically acceptable. According to our experiment results, more than 30.44% of the study area was burned during the 2019–2020 ‘Black-Summer’ fire season in Australia. Among the burned areas, high severity accounted for 12.14%, moderate severity for 11.48%, while low severity was 6.82%. For unburned areas, farmland accounted for 45.52% of the study area, of which about one-third was affected by the disturbances other than fire. The remaining area consists of 19.42% unaffected forest, 3.48% building and bare land, and 1.14% water. The comparison analysis shows that our object-based image classification framework takes full advantage of the multi-source data and generates the edges of burned areas more clearly, which contributes to the improved fire management and control. Numéro de notice : A2022-873 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/19475705.2022.2098066 Date de publication en ligne : 02/08/2022 En ligne : https://doi.org/10.1080/19475705.2022.2098066 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102171
in Geomatics, Natural Hazards and Risk > vol 13 (2022) . - pp 1867 - 1897[article]Spatial distribution of lead (Pb) in soil: a case study in a contaminated area of the Czech Republic / Nicolas Francos in Geomatics, Natural Hazards and Risk, vol 13 (2022)PermalinkBuilding detection with convolutional networks trained with transfer learning / Simon Šanca in Geodetski vestnik, vol 65 n° 4 (December 2021 - February 2022)PermalinkNational scale mapping of larch plantations for Wales using the Sentinel-2 data archive / Suvarna M. Punalekar in Forest ecology and management, vol 501 (December-1 2021)PermalinkCloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques / Miao Tian in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)PermalinkCharacterizing urban land changes of 30 global megacities using nighttime light time series stacks / Qiming Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)PermalinkSuper-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)PermalinkBretagne, la végétation cartographiée / Marielle Mayo in Géomètre, n° 2185 (novembre 2020)PermalinkMultiview automatic target recognition for infrared imagery using collaborative sparse priors / Xuelu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)PermalinkAqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy / Hrishikesh Kumar in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)PermalinkAssessment of malaria hazard, vulnerability, and risks in Dire Dawa City Administration of eastern Ethiopia using GIS and remote sensing / Abdinasir Moha in Applied geomatics, vol 12 n° 1 (April 2020)Permalink