Descripteur
Termes IGN > 1- Outils - instruments et méthodes > instrument > capteur (télédétection) > Short Waves InfraRed
Short Waves InfraRedSynonyme(s)SwirVoir aussi |
Documents disponibles dans cette catégorie (7)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A machine learning method for Arctic lakes detection in the permafrost areas of Siberia / Piotr Janiec in European journal of remote sensing, vol 56 n° 1 (2023)
[article]
Titre : A machine learning method for Arctic lakes detection in the permafrost areas of Siberia Type de document : Article/Communication Auteurs : Piotr Janiec, Auteur ; Jakub Nowosad, Auteur ; Sbigniew Zwoliński, Auteur Année de publication : 2023 Article en page(s) : n° 2163923 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] Arctique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-8
[Termes IGN] lac glaciaire
[Termes IGN] MERIT
[Termes IGN] modèle numérique de surface
[Termes IGN] pergélisol
[Termes IGN] Short Waves InfraRed
[Termes IGN] SibérieRésumé : (auteur) Thermokarst lakes are the main components of the vast Arctic and subarctic landscapes. These lakes can serve as geoindicators of permafrost degradation; therefore, proper lake distribution assessment methods are necessary. In this study, we compared four machine learning methods to improve existing lake detection systems. The northern part of Yakutia was selected as the study area owing to its complex environment. We used data from Landsat 8 and spectral indices to take into account the spectral characteristics of the lakes, and MERIT DEM data to take into account the topography. The lowest accuracy was found for the classification and regression trees (CART) method (overall accuracy = 81%). On the other hand, the random forests (RF) classification provided the best results (overall accuracy = 92%), and only this classification coped well in all problematic areas, such as shaded and humid areas, near steep slopes, burn scars, and rivers. The altitude and bands SWIR1 (Short wave infrared 1), SWIR2 (Short wave infrared 2), and Green were the most important. Spectral indices did not have significant impact on the classification results in the specific conditions of the thermokarst lakes environment. 17,700 lakes were identified with the total area of 271.43 km2. Numéro de notice : A2023-218 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2022.2163923 Date de publication en ligne : 19/01/2023 En ligne : https://doi.org/10.1080/22797254.2022.2163923 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103156
in European journal of remote sensing > vol 56 n° 1 (2023) . - n° 2163923[article]VNIR-SWIR superspectral mineral mapping: An example from Cuprite, Nevada / Kathleen E. Johnson in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 11 (November 2020)
[article]
Titre : VNIR-SWIR superspectral mineral mapping: An example from Cuprite, Nevada Type de document : Article/Communication Auteurs : Kathleen E. Johnson, Auteur ; Krzysztof Koperski, Auteur Année de publication : 2020 Article en page(s) : pp 695 - 700 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie géologique
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] image proche infrarouge
[Termes IGN] image Worldview
[Termes IGN] minéralogie
[Termes IGN] Nevada (Etats-Unis)
[Termes IGN] réalité de terrain
[Termes IGN] Short Waves InfraRedRésumé : (Auteur) Cuprite, Nevada, is a location well known for numerous studies of its hydrothermal mineralogy. This region has been used to validate geological interpretations of airborne hyperspectral imagery (AVIRIS HSI ), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER ) imagery, and most recently eight-band WorldView-3 shortwave infrared (SWIR ) imagery. WorldView-3 is a high-spatial-resolution commercial multispectral satellite sensor with eight visible-to-near-infrared (VNIR ) bands (0.42–1.04 μm) and eight SWIR bands (1.2–2.33 μm). We have applied mineral mapping techniques to all 16 bands to perform a geological analysis of the Cuprite, Nevada, location. Ground truth for the training and validation was derived from AVIRIS hyperspectral data and United States Geological Survey mineral spectral data for this location. We present the results of a supervised mineral-mapping classification applying a random-forest classifier. Our results show that with good ground truth, WorldView-3 SWIR + VNIR imagery produces an accurate geological assessment. Numéro de notice : A2020-709 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.11.695 Date de publication en ligne : 01/11/2020 En ligne : https://doi.org/10.14358/PERS.86.11.695 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96395
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 11 (November 2020) . - pp 695 - 700[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020111 SL Revue Centre de documentation Revues en salle Disponible Complete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China / Kun Tan in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
[article]
Titre : Complete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China Type de document : Article/Communication Auteurs : Kun Tan, Auteur ; Chao Niu, Auteur ; Xiuping Jia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1 - 15 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] atténuation
[Termes IGN] correction atmosphérique
[Termes IGN] distorsion du signal
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] image hyperspectrale
[Termes IGN] mine
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] mosaïquage d'images
[Termes IGN] radiance
[Termes IGN] rayonnement infrarouge
[Termes IGN] réflectance de surface
[Termes IGN] Short Waves InfraRed
[Termes IGN] spectroradiométrie
[Termes IGN] surveillance écologiqueRésumé : (auteur) Airborne hyperspectral remote sensing is an important application in the ecological monitoring of the environment in mining areas, and accurate preprocessing of the original images is the key to quantitative information retrieval. The original image data need radiation correction to acquire surface reflectance data. Due to the impact of the field angle, incidental radiance, and the bidirectional reflectance distribution function (BRDF), there can be a brightness gradient between adjacent strips, which leads to radiance difference and obvious chromatic aberration of the mosaicked images. We propose a novel data correction method for seamless mosaicking of airborne hyperspectral images. Firstly, visible and near-infrared (VNIR) and shortwave infrared (SWIR) sensors are calibrated in the laboratory, and the radiation calibration model of the sensor is established by an integrating-sphere system. A correction function is then established by combining the BRDF effect and the radiation attenuation coefficients. We also normalize the exposure time, sun altitude angle, and sensor altitude angle according to the flight strip. The results showed that this method is able to eliminate the signal distortion, allowing the seamless mosaicking of 37 strip images which were taken in different date and conditions in the study area. After the atmospheric correction of the imagery was completed, the accuracy of the preprocessing results was evaluated by field-measured ASD spectroradiometer data. The coefficient of determination R2 of the results for the reflectance was greater than 0.9. The experiments show that the proposed method has a good performance in radiation accuracy, and can provide high-quality hyperspectral data for the follow-up application of the ecological monitoring of a mining area. Numéro de notice : A2020-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.022 Date de publication en ligne : 16/05/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.022 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95092
in ISPRS Journal of photogrammetry and remote sensing > vol 165 (July 2020) . - pp 1 - 15[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
[article]
Titre : Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California Type de document : Article/Communication Auteurs : Matthew L. Clark, Auteur Année de publication : 2020 Article en page(s) : pp 26 - 40 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] carte forestière
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] couvert végétal
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] Short Waves InfraRedRésumé : (Auteur) The current era of earth observation now provides constellations of open-access, multispectral satellite imagery with medium spatial resolution, greatly increasing the frequency of cloud-free data for analysis. The Landsat satellites have a long historical record, while the newer Sentinel-2 (S2) satellites offer higher temporal, spatial and spectral resolution. The goal of this study was to evaluate the relative benefits of single- and multi-seasonal multispectral satellite data for discriminating detailed forest alliances, as defined by the U.S. National Vegetation Classification system, in a Mediterranean-climate landscape (Sonoma County, California). Results were compared to a companion analysis of simulated hyperspectral satellite data (HyspIRI) for the same study site and reference data (Clark et al., 2018). Experiments used real and simulated S2 and Landsat 8 (L8) data. Simulated S2 and L8 were from HyspIRI images, thereby focusing results on differences in spectral resolution rather than other confounding factors. The Support Vector Machine (SVM) classifier was used in a hierarchical classification of land-cover (Level 1), followed by alliances (Level 2) in forest pixels, and included summer-only and multi-seasonal sets of predictor variables (bands, indices and bands plus indices). Both real and simulated multi-seasonal multispectral variables significantly improved overall accuracy (OA) by 0.2–1.6% for Level 1 tree/no tree classifications and 3.6–25.8% for Level 2 forest alliances. Classifiers with S2 variables tended to be more accurate than L8 variables, particularly for S2, which had 0.4–2.1% and 5.1–11.8% significantly higher OA than L8 for Level 1 tree/no tree and Level 2 forest alliances, respectively. Combining multispectral bands and indices or using just bands was generally more accurate than relying on just indices for classification. Simulated HyspIRI variables from past research had significantly greater accuracy than real L8 and S2 variables, with an average OA increase of 8.2–12.6%. A final alliance-level map used for a deeper analysis used simulated multi-seasonal S2 bands and indices, which had an overall accuracy of 74.3% (Kappa = 0.70). The accuracy of this classification was only 1.6% significantly lower than the best HyspIRI-based classification, which used multi-seasonal metrics (Clark et al., 2018), and there were alliances where the S2-based classifier was more accurate. Within the context of these analyses and study area, S2 spectral-temporal data demonstrated a strong capability for mapping global forest alliances, or similar detailed floristic associations, at medium spatial resolutions (10–30 m). Numéro de notice : A2020-011 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.007 Date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94399
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 26 - 40[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems / Dong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
[article]
Titre : A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems Type de document : Article/Communication Auteurs : Dong Chen, Auteur ; Tatiana V. Loboda, Auteur ; Joanne V. Hall, Auteur Année de publication : 2020 Article en page(s) : pp 63 - 77 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] Canada
[Termes IGN] changement climatique
[Termes IGN] écosystème forestier
[Termes IGN] forêt boréale
[Termes IGN] image Landsat
[Termes IGN] incendie de forêt
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] perturbation écologique
[Termes IGN] Short Waves InfraRed
[Termes IGN] toundraRésumé : (Auteur) Satellite imagery has been widely used for the assessment of wildfire burn severity within the scientific community and fire management agencies. Multiple indices have been proposed to assess burn severity, among which the differenced Normalized Burn Ratio (dNBR) is arguably the most commonly used index that is expected to provide an objective and consistent assessment. However, although evidence of variability in the dNBR-based assessment of burn severity driven by image pair selection has been shown in many studies, the comprehensive examination of the extent of the bias resulting from the image selection has been lacking. In this study, we focus on three factors of the image selection process which are encountered by most Landsat-derived dNBR applications, including the sensor combination and the difference in timing of image acquisition (for both the year and seasonality) of pre- and post-fire image pairs. Through separate analyses, each targeting a single factor, we show that Landsat sensor combination between the pre- and post-fire images has a limited impact on the dNBR values. The difference in the year of acquisition between the images in the image pairs is shown to influence dNBR assessment with a noticeable increase in mean dNBR (>0.1) with only a single year difference between images compared to multi-year differences. However, differences in the image acquisition seasons and the resulting phenological differences is shown to impact dNBR values most considerably. Based on our results, we warn against the calculation of dNBR when the images are acquired in different seasons. We believe that despite the existence of multiple derivatives of dNBR, there remains a need for an improved version; one that is less susceptible to the phenological impacts introduced by the selected images. Numéro de notice : A2020-012 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.011 Date de publication en ligne : 19/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94400
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 63 - 77[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt An implicit radar convolutional burn index for burnt area mapping with Sentinel-1 C-band SAR data / Puzhao Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 158 (December 2019)PermalinkCalibration of NOAA16 AVHRR over a desert site using MODIS data / Eric F. Vermote in Remote sensing of environment, vol 105 n° 3 (15/12/2006)Permalink