Descripteur
Termes IGN > géomatique > base de données localisées > base de données d'adresses
base de données d'adresses |
Documents disponibles dans cette catégorie (26)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Methods for matching English language addresses / Keshav Ramani in Transactions in GIS, vol 27 n° 2 (april 2023)
[article]
Titre : Methods for matching English language addresses Type de document : Article/Communication Auteurs : Keshav Ramani, Auteur ; Daniel Borrajo, Auteur Année de publication : 2023 Article en page(s) : pp 347 - 363 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] anglais (langue)
[Termes IGN] appariement d'adresses
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'adresses
[Termes IGN] conversion de donnéesRésumé : (auteur) Addresses occupy a niche location within the landscape of textual data, due to the positional importance carried by every word, and the geographic scope it refers to. The task of matching addresses happens every day and is present in various fields such as mail redirection, entity resolution, etc. Our work defines, and formalizes a framework to generate matching and mismatching pairs of addresses in the English language, and use it to evaluate various methods to automatically perform address matching. These methods vary widely from distance-based approaches to deep learning models. By studying the Precision, Recall, and Accuracy metrics of these approaches, we obtain an understanding of the best suited method for this setting of the address matching task. Numéro de notice : A2023-195 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.13027 Date de publication en ligne : 17/03/2023 En ligne : https://doi.org/10.1111/tgis.13027 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103080
in Transactions in GIS > vol 27 n° 2 (april 2023) . - pp 347 - 363[article]A graph-based approach for representing addresses in geocoding / Chen Zhang in Computers, Environment and Urban Systems, vol 100 (March 2023)
[article]
Titre : A graph-based approach for representing addresses in geocoding Type de document : Article/Communication Auteurs : Chen Zhang, Auteur ; Biao He, Auteur ; Renzhong Guo, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101937 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement d'adresses
[Termes IGN] base de données d'adresses
[Termes IGN] géocodage par adresse postale
[Termes IGN] graphe
[Termes IGN] stockage de données
[Termes IGN] toponymeRésumé : (auteur) Addresses, one of the most important geographical reference systems in natural languages, are usually used to search spatial objects in daily life. Geocoding concatenates text with georeferenced coordinates and is an essential middleware service in geographic information applications. Despite its importance, geocoding remains challenging with only text as input, hindering text matching in reference databases without the specific text. To optimize the storage and retrieval of addresses in databases, this work proposes a graph-based approach for representing addresses. The approach clarifies the characteristics of relative concepts, designs a graph structure and identifies modelling strategies. Furthermore, a schema is proposed to perform address matching and toponym disambiguation using an address graph. The model is implemented on a graph database, and experimental tasks are employed to demonstrate its effectiveness. The approach provides a new reference for developers when creating address databases. Numéro de notice : A2023-126 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101937 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101937 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102505
in Computers, Environment and Urban Systems > vol 100 (March 2023) . - n° 101937[article]Mapping population distribution from open address data: application to mainland Portugal / Nelson Mileu in Journal of maps, vol 18 n° 3 (March 2023)
[article]
Titre : Mapping population distribution from open address data: application to mainland Portugal Type de document : Article/Communication Auteurs : Nelson Mileu, Auteur ; Margarida Queirós, Auteur ; Paolo Morgado, Auteur Année de publication : 2023 Article en page(s) : pp 585 - 593 Note générale : bilbliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] base de données d'adresses
[Termes IGN] carte thématique
[Termes IGN] distribution spatiale
[Termes IGN] grille
[Termes IGN] planification urbaine
[Termes IGN] population
[Termes IGN] Portugal
[Termes IGN] QGISRésumé : (auteur) Mapping population distribution remains a common need in various fields of studies. Several approaches and methodologies have been adopted to obtain high-resolution population distribution grids. The use of addresses data to obtain gridded population distribution maps emerges as one of the more recent and accurate approaches. The increasing dissemination and availability of geo-data and more specifically address data allow us to obtain updated, granular and high spatial resolution population distribution maps. This paper describes a bottom-up open addresses data mapping-based approach of gridded population distribution with a fine spatial resolution. Through a QGIS plugin, an adaptation of the housing unit methodology was implemented to obtain 500 m × 500 and 250 m × 250 m population grids for mainland Portugal. The results showed that the use of reliable addresses databases can generate gridded population distribution maps with a high degree of adjustment to reality. Numéro de notice : A2023-154 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/17445647.2022.2114862 Date de publication en ligne : 07/09/2022 En ligne : https://doi.org/10.1080/17445647.2022.2114862 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102839
in Journal of maps > vol 18 n° 3 (March 2023) . - pp 585 - 593[article]Geographically masking addresses to study COVID-19 clusters / Walid Houfaf-Khoufaf in Cartography and Geographic Information Science, vol inconnu (2023)
[article]
Titre : Geographically masking addresses to study COVID-19 clusters Type de document : Article/Communication Auteurs : Walid Houfaf-Khoufaf, Auteur ; Guillaume Touya , Auteur Année de publication : 2023 Projets : 1-Pas de projet / Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] adresse postale
[Termes IGN] anonymisation
[Termes IGN] carte sanitaire
[Termes IGN] classification barycentrique
[Termes IGN] surveillance sanitaire
[Termes IGN] traitement de données localiséesRésumé : (auteur) The spatio-temporal analysis of cases is a good way an epidemic, and the recent COVID-19 pandemic unfortunately generated a huge amount of data. But analysing this raw data, with for instance the address of the people who contracted COVID-19, raises some privacy issues, and geomasking is necessary to preserve both people privacy and the spatial accuracy required for analysis. This paper proposes dierent geomasking techniques adapted to this COVID-19 data. Methods: Different techniques are adapted from the literature, and tested on a synthetic dataset mimicking the COVID-19 spatio-temporal spreading in Paris and a more rural nearby region. Theses techniques are assessed in terms of k-anonymity and cluster preservation. Results: Three adapted geomasking techniques are proposed: aggregation, bimodal gaussian perturbation, and simulated crowding. All three can be useful in different use cases, but the bimodal gaussian perturbation is the overall best techniques, and the simulated crowding is the most promising one, provided some improvements are introduced to avoid points with a low k-anonymity. Conclusions: It is possible to use geomasking techniques on addresses of people who caught COVID-19, while preserving the important spatial patterns. Numéro de notice : A2023-084 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers RSquare Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2021.1977709 Date de publication en ligne : 08/10/2021 En ligne : https://doi.org/10.1080/15230406.2021.1977709 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96857
in Cartography and Geographic Information Science > vol inconnu (2023)[article]A machine learning approach for detecting rescue requests from social media / Zheye Wang in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
[article]
Titre : A machine learning approach for detecting rescue requests from social media Type de document : Article/Communication Auteurs : Zheye Wang, Auteur ; Nina S.N. Lam, Auteur ; Mingxuan Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 570 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage automatique
[Termes IGN] code postal
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] filtrage d'information
[Termes IGN] secours d'urgence
[Termes IGN] tempête
[Termes IGN] terminologie
[Termes IGN] TwitterRésumé : (auteur) Hurricane Harvey in 2017 marked an important transition where many disaster victims used social media rather than the overloaded 911 system to seek rescue. This article presents a machine-learning-based detector of rescue requests from Harvey-related Twitter messages, which differentiates itself from existing ones by accounting for the potential impacts of ZIP codes on both the preparation of training samples and the performance of different machine learning models. We investigate how the outcomes of our ZIP code filtering differ from those of a recent, comparable study in terms of generating training data for machine learning models. Following this, experiments are conducted to test how the existence of ZIP codes would affect the performance of machine learning models by simulating different percentages of ZIP-code-tagged positive samples. The findings show that (1) all machine learning classifiers except K-nearest neighbors and Naïve Bayes achieve state-of-the-art performance in detecting rescue requests from social media; (2) using ZIP code filtering could increase the effectiveness of gathering rescue requests for training machine learning models; (3) machine learning models are better able to identify rescue requests that are associated with ZIP codes. We thereby encourage every rescue-seeking victim to include ZIP codes when posting messages on social media. This study is a useful addition to the literature and can be helpful for first responders to rescue disaster victims more efficiently. Numéro de notice : A2022-846 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11110570 Date de publication en ligne : 16/11/2022 En ligne : https://doi.org/10.3390/ijgi11110570 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102081
in ISPRS International journal of geo-information > vol 11 n° 11 (November 2022) . - n° 570[article]Automatic identification of addresses: A systematic literature review / Paula Cruz in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)PermalinkHow much do we learn from addresses? On the syntax, semantics and pragmatics of addressing systems / Ali Javidaneh in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)PermalinkGenerating vague neighbourhoods through data mining of passive web data / Paul Brindley in International journal of geographical information science IJGIS, vol 32 n° 3-4 (March - April 2018)PermalinkGenerative street addresses from satellite imagery / İlke Demir in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)PermalinkPermalinkGéomatique et géo-décisionnel appliqués au Référentiel des territoires du département de l’Hérault / Stanislas Cheptou (2017)PermalinkUne adresse normalisée sur toute la France / Pierre Clergeot in Géomètre, n° 2104 (juin 2013)PermalinkL'adresse, un enjeu national / M. Mayo in Géomètre, n° 2089 (février 2012)PermalinkThe development of a web-based demographic data extraction tool for population monitoring / T. Chow in Transactions in GIS, vol 15 n° 4 (August 2011)PermalinkAdresses et numéros de parcelles : le décret qui précise / Françoise de Blomac in SIG la lettre, n° 125 (mars 2011)Permalink